U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

Rickets

MedGen UID:
48470
Concept ID:
C0035579
Disease or Syndrome
Synonyms: Hypovitaminosis D; Nutritional rickets; Vitamin D deficiency disease; Vitamin-D deficiency rickets
SNOMED CT: Rickets (41345002)
 
Related genes: FGF23, PHEX, ENPP1, DMP1, CLCN5
 
HPO: HP:0002748
Monarch Initiative: MONDO:0005520

Definition

Rickets is divided into two major categories including calcipenic and phosphopenic. Hypophosphatemia is described as a common manifestation of both categories. Hypophosphatemic rickets is the most common type of rickets that is characterized by low levels of serum phosphate, resistance to ultraviolet radiation or vitamin D intake. There are several issues involved in hypophosphatemic rickets such as calcium, vitamin D, phosphorus deficiencies. Moreover, other disorder can be associated with its occurrence such as absorption defects due to pancreatic, intestinal, gastric, and renal disorders and hepatobiliary disease. Symptoms are usually seen in childhood and can be varied in severity. Severe forms may be linked to bowing of the legs, poor bone growth, and short stature as well as joint and bone pain. Hypophosphatemic rickets are associated with renal excretion of phosphate, hypophosphatemia, and mineral defects in bones. The familial type of the disease is the most common type of rickets. [from HPO]

Term Hierarchy

Conditions with this feature

Lowe syndrome
MedGen UID:
18145
Concept ID:
C0028860
Disease or Syndrome
Lowe syndrome (oculocerebrorenal syndrome) is characterized by involvement of the eyes, central nervous system, and kidneys. Dense congenital cataracts are found in all affected boys and infantile glaucoma in approximately 50%. All boys have impaired vision; corrected acuity is rarely better than 20/100. Generalized hypotonia is noted at birth and is of central (brain) origin. Deep tendon reflexes are usually absent. Hypotonia may slowly improve with age, but normal motor tone and strength are never achieved. Motor milestones are delayed. Almost all affected males have some degree of intellectual disability; 10%-25% function in the low-normal or borderline range, approximately 25% in the mild-to-moderate range, and 50%-65% in the severe-to-profound range of intellectual disability. Affected males have varying degrees of proximal renal tubular dysfunction of the Fanconi type, including low molecular-weight (LMW) proteinuria, aminoaciduria, bicarbonate wasting and renal tubular acidosis, phosphaturia with hypophosphatemia and renal rickets, hypercalciuria, sodium and potassium wasting, and polyuria. The features of symptomatic Fanconi syndrome do not usually become manifest until after the first few months of life, except for LMW proteinuria. Glomerulosclerosis associated with chronic tubular injury usually results in slowly progressive chronic renal failure and end-stage renal disease between the second and fourth decades of life.
Adult hypophosphatasia
MedGen UID:
120636
Concept ID:
C0268413
Disease or Syndrome
Hypophosphatasia is characterized by defective mineralization of growing or remodeling bone, with or without root-intact tooth loss, in the presence of low activity of serum and bone alkaline phosphatase. Clinical features range from stillbirth without mineralized bone at the severe end to pathologic fractures of the lower extremities in later adulthood at the mild end. While the disease spectrum is a continuum, seven clinical forms of hypophosphatasia are usually recognized based on age at diagnosis and severity of features: Perinatal (severe): characterized by pulmonary insufficiency and hypercalcemia. Perinatal (benign): prenatal skeletal manifestations that slowly resolve into one of the milder forms. Infantile: onset between birth and age six months of clinical features of rickets without elevated serum alkaline phosphatase activity. Severe childhood (juvenile): variable presenting features progressing to rickets. Mild childhood: low bone mineral density for age, increased risk of fracture, and premature loss of primary teeth with intact roots. Adult: characterized by stress fractures and pseudofractures of the lower extremities in middle age, sometimes associated with early loss of adult dentition. Odontohypophosphatasia: characterized by premature exfoliation of primary teeth and/or severe dental caries without skeletal manifestations.
Proximal renal tubular acidosis
MedGen UID:
82804
Concept ID:
C0268435
Disease or Syndrome
A type of renal tubular acidosis characterized by a failure of the proximal tubular cells to reabsorb bicarbonate, leading to urinary bicarbonate wasting and subsequent acidemia.
Juvenile nephropathic cystinosis
MedGen UID:
75701
Concept ID:
C0268626
Congenital Abnormality
Cystinosis comprises three allelic phenotypes: Nephropathic cystinosis in untreated children is characterized by renal Fanconi syndrome, poor growth, hypophosphatemic/calcipenic rickets, impaired glomerular function resulting in complete glomerular failure, and accumulation of cystine in almost all cells, leading to cellular dysfunction with tissue and organ impairment. The typical untreated child has short stature, rickets, and photophobia. Failure to thrive is generally noticed after approximately age six months; signs of renal tubular Fanconi syndrome (polyuria, polydipsia, dehydration, and acidosis) appear as early as age six months; corneal crystals can be present before age one year and are always present after age 16 months. Prior to the use of renal transplantation and cystine-depleting therapy, the life span in nephropathic cystinosis was no longer than ten years. With these interventions, affected individuals can survive at least into the mid-forties or fifties with satisfactory quality of life. Intermediate cystinosis is characterized by all the typical manifestations of nephropathic cystinosis, but onset is at a later age. Renal glomerular failure occurs in all untreated affected individuals, usually between ages 15 and 25 years. The non-nephropathic (ocular) form of cystinosis is characterized clinically only by photophobia resulting from corneal cystine crystal accumulation.
Vitamin D-dependent rickets, type 1
MedGen UID:
124344
Concept ID:
C0268689
Disease or Syndrome
Vitamin D-dependent rickets is a disorder of bone development that leads to softening and weakening of the bones (rickets). There are several forms of the condition that are distinguished primarily by their genetic causes: type 1A (VDDR1A), type 1B (VDDR1B), and type 2A (VDDR2A). There is also evidence of a very rare form of the condition, called type 2B (VDDR2B), although not much is known about this form.\n\nThe signs and symptoms of vitamin D-dependent rickets begin within months after birth, and most are the same for all types of the condition. The weak bones often cause bone pain and delayed growth and have a tendency to fracture. When affected children begin to walk, they may develop abnormally curved (bowed) legs because the bones are too weak to bear weight. Impaired bone development also results in widening of the areas near the ends of bones where new bone forms (metaphyses), especially in the knees, wrists, and ribs. Some people with vitamin D-dependent rickets have dental abnormalities such as thin tooth enamel and frequent cavities. Poor muscle tone (hypotonia) and muscle weakness are also common in this condition, and some affected individuals develop seizures.\n\nHair loss (alopecia) can occur in VDDR2A, although not everyone with this form of the condition has alopecia. Affected individuals can have sparse or patchy hair or no hair at all on their heads. Some affected individuals are missing body hair as well.\n\nIn vitamin D-dependent rickets, there is an imbalance of certain substances in the blood. An early sign in all types of the condition is low levels of the mineral calcium (hypocalcemia), which is essential for the normal formation of bones and teeth. Affected individuals also develop high levels of a hormone involved in regulating calcium levels called parathyroid hormone (PTH), which leads to a condition called secondary hyperparathyroidism. Low levels of a mineral called phosphate (hypophosphatemia) also occur in affected individuals. Vitamin D-dependent rickets types 1 and 2 can be grouped by blood levels of a hormone called calcitriol, which is the active form of vitamin D; individuals with VDDR1A and VDDR1B have abnormally low levels of calcitriol and individuals with VDDR2A and VDDR2B have abnormally high levels.
Autosomal dominant hypophosphatemic rickets
MedGen UID:
83346
Concept ID:
C0342642
Disease or Syndrome
Autosomal dominant hypophosphatemic rickets (ADHR) is characterized by isolated renal phosphate wasting, hypophosphatemia, and inappropriately normal 1,25-dihydroxyvitamin D3 (calcitriol) levels. Patients frequently present with bone pain, rickets, and tooth abscesses. In contrast to X-linked dominant hypophosphatemic rickets (XLH; 307800), ADHR shows incomplete penetrance, variable age at onset (childhood to adult), and resolution of the phosphate-wasting defect in rare cases (Econs et al., 1997). See also hypophosphatemic bone disease (146350). Genetic Heterogeneity of Hypophosphatemic Rickets Other forms of hypophosphatemic rickets include autosomal recessive forms, i.e., ARHR1 (241520), caused by mutation in the DMP1 gene (600980) on chromosome 4q21, and ARHR2 (613312), caused by mutation in the ENPP1 gene (173335) on chromosome 6q23. An X-linked dominant form (XLHR; 307800) is caused by mutation in the PHEX gene (300550), and an X-linked recessive form (300554) is caused by mutation in the CLCN5 gene (300008). Clinical Variability of Hypophosphatemic Rickets Hypophosphatemic rickets can be caused by disorders of vitamin D metabolism or action (see VDDR1A, 264700). A form of hypophosphatemic rickets with hypercalciuria (HHRH; 241530) is caused by mutation in the SLC34A3 gene (609826), and there is evidence that a form of hypophosphatemic rickets with hyperparathyroidism (612089) may be caused by a translocation that results in an increase in alpha-klotho levels (KLOTHO; 604824).
Vitamin D-dependent rickets type II with alopecia
MedGen UID:
90989
Concept ID:
C0342646
Disease or Syndrome
Vitamin D-dependent rickets type 2A (VDDR2A) is caused by a defect in the vitamin D receptor gene. This defect leads to an increase in the circulating ligand, 1,25-dihydroxyvitamin D3. Most patients have total alopecia in addition to rickets. VDDR2B (600785) is a form of vitamin D-dependent rickets with a phenotype similar to VDDR2A but a normal vitamin D receptor, in which end-organ resistance to vitamin D has been shown to be caused by a nuclear ribonucleoprotein that interferes with the vitamin D receptor-DNA interaction. For a general phenotypic description and a discussion of genetic heterogeneity of rickets due to disorders in vitamin D metabolism or action, see vitamin D-dependent rickets type 1A (VDDR1A; 264700).
Familial X-linked hypophosphatemic vitamin D refractory rickets
MedGen UID:
196551
Concept ID:
C0733682
Disease or Syndrome
The phenotypic spectrum of X-linked hypophosphatemia (XLH) ranges from isolated hypophosphatemia to severe lower-extremity bowing. XLH frequently manifests in the first two years of life when lower-extremity bowing becomes evident with the onset of weight bearing; however, it sometimes is not manifest until adulthood, as previously unevaluated short stature. In adults, enthesopathy (calcification of the tendons, ligaments, and joint capsules) associated with joint pain and impaired mobility may be the initial presenting complaint. Persons with XLH are prone to spontaneous dental abscesses; sensorineural hearing loss has also been reported.
Vitamin D hydroxylation-deficient rickets, type 1B
MedGen UID:
374020
Concept ID:
C1838657
Disease or Syndrome
Vitamin D hydroxylation-deficient rickets type 1B (VDDR1B) is caused by a defect in vitamin D 25-hydroxylation (Molin et al., 2017). The major function of vitamin D is to maintain calcium and phosphate levels in the normal range to support metabolic functions, neuromuscular transmission, and bone mineralization. Disorders of vitamin D metabolism or action lead to defective bone mineralization and clinical features including intestinal malabsorption of calcium, hypocalcemia, secondary hyperparathyroidism, increased renal clearance of phosphorus, and hypophosphatemia. The combination of hypocalcemia and hypophosphatemia causes impaired mineralization of bone that results in rickets and osteomalacia (summary by Liberman and Marx, 2001). Rickets can occur because of inadequate dietary intake or sun exposure or because of genetic disorders. Vitamin D3 (cholecalciferol) is taken in the diet or synthesized in the skin from 7-dehydrocholesterol by ultraviolet irradiation. For vitamin D to be active, it needs to be converted to its active form, 1,25-dihydroxyvitamin D3. Vitamin D is transported in the blood by the vitamin D binding protein (DBP; 139200) to the liver, where vitamin D 25-hydroxylase (CYP2R1; 608713) is the key enzyme for 25-hydroxylation. Vitamin D 25(OH)D3, the major circulating form of vitamin D, is then transported to the kidney, where 25(OH)D3 is hydroxylated at the position of carbon 1 of the A ring, resulting in the active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) (summary by Christakos et al., 2010).
Hypophosphatemic bone disease
MedGen UID:
333534
Concept ID:
C1840321
Disease or Syndrome
Congenital bile acid synthesis defect 1
MedGen UID:
335883
Concept ID:
C1843116
Disease or Syndrome
Congenital defects of bile acid synthesis are autosomal recessive disorders characterized by neonatal onset of progressive liver disease with cholestatic jaundice and malabsorption of lipids and lipid-soluble vitamins from the gastrointestinal tract resulting from a primary failure to synthesize bile acids. Affected infants show failure to thrive and secondary coagulopathy. In most forms of the disorder, there is a favorable response to oral bile acid therapy (summary by Cheng et al., 2003). Genetic Heterogeneity of Congenital Defects in Bile Acid Synthesis There are several disorders that result from defects in bile acid synthesis. See CBAS2 (235555), caused by mutation in the delta(4)-3-oxosteroid 5-beta-reductase gene (AKR1D1; 604741) on chromosome 7q33; CBAS3 (613812), caused by mutation in the 7-alpha hydroxylase gene (CYP7B1; 603711) on chromosome 8q12; CBAS4 (214950), caused by mutation in the AMACR gene (604489) on chromosome 5p13; CBAS5 (616278), caused by mutation in the ABCD3 gene (170995) on chromosome 1p21; and CBAS6 (617308), caused by mutation in the ACOX2 gene (601641) on chromosome 3p14. See also progressive familial intrahepatic cholestasis (PFIC1; 211600), which has a similar phenotype.
Hypophosphatemic rickets, X-linked recessive
MedGen UID:
335115
Concept ID:
C1845168
Disease or Syndrome
X-linked recessive hypophosphatemic rickets is a form of X-linked hypercalciuric nephrolithiasis, which comprises a group of disorders characterized by proximal renal tubular reabsorptive failure, hypercalciuria, nephrocalcinosis, and renal insufficiency. These disorders have also been referred to as the 'Dent disease complex' (Scheinman, 1998; Gambaro et al., 2004). For a general discussion of Dent disease, see 300009.
Dent disease type 1
MedGen UID:
336322
Concept ID:
C1848336
Disease or Syndrome
Dent disease, an X-linked disorder of proximal renal tubular dysfunction, is characterized by low molecular weight (LMW) proteinuria, hypercalciuria, and at least one additional finding including nephrocalcinosis, nephrolithiasis, hematuria, hypophosphatemia, chronic kidney disease (CKD), and evidence of X-linked inheritance. Males younger than age ten years may manifest only LMW proteinuria and/or hypercalciuria, which are usually asymptomatic. Thirty to 80% of affected males develop end-stage renal disease (ESRD) between ages 30 and 50 years; in some instances ESRD does not develop until the sixth decade of life or later. The disease may also be accompanied by rickets or osteomalacia, growth restriction, and short stature. Disease severity can vary within the same family. Males with Dent disease 2 (caused by pathogenic variants in OCRL) may also have mild intellectual disability, cataracts, and/or elevated muscle enzymes. Due to random X-chromosome inactivation, some female carriers may manifest hypercalciuria and, rarely, renal calculi and moderate LMW proteinuria. Females rarely develop CKD.
Rod-cone dystrophy, sensorineural deafness, and Fanconi-type renal dysfunction
MedGen UID:
376565
Concept ID:
C1849333
Disease or Syndrome
Rod-cone dystrophy, sensorineural deafness, and Fanconi-type renal dysfunction (RCDFRD) is characterized by onset of hearing impairment and reduced vision within the first 5 years of life. Renal dysfunction results in rickets-like skeletal changes, and death may occur in childhood or young adulthood due to renal failure (Beighton et al., 1993).
Renal tubular acidosis 3
MedGen UID:
336601
Concept ID:
C1849435
Disease or Syndrome
Autosomal recessive hypophosphatemic bone disease
MedGen UID:
501133
Concept ID:
C1853271
Disease or Syndrome
Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder characterized by the presence of hypophosphatemia secondary to renal phosphate wasting, radiographic and/or histologic evidence of rickets, limb deformities, muscle weakness, and bone pain. HHRH is distinct from other forms of hypophosphatemic rickets in that affected individuals present with hypercalciuria due to increased serum 1,25-dihydroxyvitamin D levels and increased intestinal calcium absorption (summary by Bergwitz et al., 2006).
Celiac disease, susceptibility to, 1
MedGen UID:
395227
Concept ID:
C1859310
Finding
Celiac disease is a systemic autoimmune disease that can be associated with gastrointestinal findings (diarrhea, malabsorption, abdominal pain and distension, bloating, vomiting, and weight loss) and/or highly variable non-gastrointestinal findings (dermatitis herpetiformis, chronic fatigue, joint pain/inflammation, iron deficiency anemia, migraines, depression, attention-deficit disorder, epilepsy, osteoporosis/osteopenia, infertility and/or recurrent fetal loss, vitamin deficiencies, short stature, failure to thrive, delayed puberty, dental enamel defects, and autoimmune disorders). Classic celiac disease, characterized by mild to severe gastrointestinal symptoms, is less common than non-classic celiac disease, characterized by absence of gastrointestinal symptoms.
Hypophosphatemic rickets and hyperparathyroidism
MedGen UID:
383131
Concept ID:
C2677524
Disease or Syndrome
Vitamin D-dependent rickets, type 2B
MedGen UID:
411667
Concept ID:
C2748783
Disease or Syndrome
Vitamin D-dependent rickets type 2B with normal vitamin D receptor (VDDR2B) is an unusual form of rickets due to abnormal expression of a hormone response element-binding protein that interferes with the normal function of the vitamin D receptor. Vitamin D-dependent rickets type 2A (VDDR2A) is caused by mutation in the vitamin D receptor gene (VDR; 601769), and most patients have alopecia in addition to rickets. For a general phenotypic description and a discussion of genetic heterogeneity of rickets due to disorders in vitamin D metabolism or action, see vitamin D-dependent rickets type 1A (VDDR1A; 264700).
Nephropathic cystinosis
MedGen UID:
419735
Concept ID:
C2931187
Disease or Syndrome
Cystinosis comprises three allelic phenotypes: Nephropathic cystinosis in untreated children is characterized by renal Fanconi syndrome, poor growth, hypophosphatemic/calcipenic rickets, impaired glomerular function resulting in complete glomerular failure, and accumulation of cystine in almost all cells, leading to cellular dysfunction with tissue and organ impairment. The typical untreated child has short stature, rickets, and photophobia. Failure to thrive is generally noticed after approximately age six months; signs of renal tubular Fanconi syndrome (polyuria, polydipsia, dehydration, and acidosis) appear as early as age six months; corneal crystals can be present before age one year and are always present after age 16 months. Prior to the use of renal transplantation and cystine-depleting therapy, the life span in nephropathic cystinosis was no longer than ten years. With these interventions, affected individuals can survive at least into the mid-forties or fifties with satisfactory quality of life. Intermediate cystinosis is characterized by all the typical manifestations of nephropathic cystinosis, but onset is at a later age. Renal glomerular failure occurs in all untreated affected individuals, usually between ages 15 and 25 years. The non-nephropathic (ocular) form of cystinosis is characterized clinically only by photophobia resulting from corneal cystine crystal accumulation.
Fanconi renotubular syndrome 2
MedGen UID:
462002
Concept ID:
C3150652
Disease or Syndrome
Any Fanconi syndrome in which the cause of the disease is a mutation in the SLC34A1 gene.
Proximal tubulopathy-diabetes mellitus-cerebellar ataxia syndrome
MedGen UID:
463309
Concept ID:
C3151959
Disease or Syndrome
Proximal tubulopathy-diabetes mellitus-cerebellar ataxia syndrome is characterized by onset of proximal tubulopathy in the first year of life, followed by progressive development during childhood of skin anomalies (erythrocyanosis and abnormal pigmentation), blindness, osteoporosis, cerebellar ataxia, mitochondrial myopathy, deafness and diabetes mellitus.
Fanconi-Bickel syndrome
MedGen UID:
501176
Concept ID:
C3495427
Disease or Syndrome
Fanconi-Bickel syndrome is a rare but well-defined clinical entity, inherited in an autosomal recessive mode and characterized by hepatorenal glycogen accumulation, proximal renal tubular dysfunction, and impaired utilization of glucose and galactose (Manz et al., 1987). Because no underlying enzymatic defect in carbohydrate metabolism had been identified and because metabolism of both glucose and galactose is impaired, a primary defect of monosaccharide transport across the membranes had been suggested (Berry et al., 1995; Fellers et al., 1967; Manz et al., 1987; Odievre, 1966). Use of the term glycogenosis type XI introduced by Hug (1987) is to be discouraged because glycogen accumulation is not due to the proposed functional defect of phosphoglucomutase, an essential enzyme in the common degradative pathways of both glycogen and galactose, but is secondary to nonfunctional glucose transport.
Fanconi renotubular syndrome 3
MedGen UID:
816430
Concept ID:
C3810100
Disease or Syndrome
Fanconi renotubular syndrome-3 (FRTS3) is an autosomal dominant disorder characterized by rickets, impaired growth, glucosuria, generalized aminoaciduria, phosphaturia, metabolic acidosis, and low molecular weight proteinuria (summary by Klootwijk et al., 2014). For a general phenotypic description and a discussion of genetic heterogeneity of Fanconi renotubular syndrome, see FRTS1 (134600).
Fanconi renotubular syndrome 4 with maturity-onset diabetes of the young
MedGen UID:
863399
Concept ID:
C4014962
Disease or Syndrome
Any Fanconi syndrome in which the cause of the disease is a mutation in the HNF4A gene.
Hypophosphatemic rickets, autosomal recessive, 1
MedGen UID:
1632314
Concept ID:
C4551495
Disease or Syndrome
Hereditary hypophosphatemic rickets is a disorder related to low levels of phosphate in the blood (hypophosphatemia). Phosphate is a mineral that is essential for the normal formation of bones and teeth.\n\nIn most cases, the signs and symptoms of hereditary hypophosphatemic rickets begin in early childhood. The features of the disorder vary widely, even among affected members of the same family. Mildly affected individuals may have hypophosphatemia without other signs and symptoms. More severely affected children experience slow growth and are shorter than their peers. They develop bone abnormalities that can interfere with movement and cause bone pain. The most noticeable of these abnormalities are bowed legs or knock knees. These abnormalities become apparent with weight-bearing activities such as walking. If untreated, they tend to worsen with time.\n\nOther signs and symptoms of hereditary hypophosphatemic rickets can include premature fusion of the skull bones (craniosynostosis) and dental abnormalities. The disorder may also cause abnormal bone growth where ligaments and tendons attach to joints (enthesopathy). In adults, hypophosphatemia is characterized by a softening of the bones known as osteomalacia.\n\nResearchers have described several forms of hereditary hypophosphatemic rickets, which are distinguished by their pattern of inheritance and genetic cause. The most common form of the disorder is known as X-linked hypophosphatemic rickets (XLH). It has an X-linked dominant pattern of inheritance. X-linked recessive, autosomal dominant, and autosomal recessive forms of the disorder are much rarer.\n\nAnother rare type of the disorder is known as hereditary hypophosphatemic rickets with hypercalciuria (HHRH). In addition to hypophosphatemia, this condition is characterized by the excretion of high levels of calcium in the urine (hypercalciuria).
Fanconi renotubular syndrome 1
MedGen UID:
1635492
Concept ID:
C4551503
Disease or Syndrome
Progressive familial intrahepatic cholestasis type 1
MedGen UID:
1645830
Concept ID:
C4551898
Disease or Syndrome
The phenotypic spectrum of ATP8B1 deficiency ranges from severe through moderate to mild. Severe ATP8B1 deficiency is characterized by infantile-onset cholestasis that progresses to cirrhosis, hepatic failure, and early death. Although mild-to-moderate ATP8B1 deficiency initially was thought to involve intermittent symptomatic cholestasis with a lack of hepatic fibrosis, it is now known that hepatic fibrosis may be present early in the disease course. Furthermore, in some persons with ATP8B1 deficiency the clinical findings can span the phenotypic spectrum, shifting over time from the mild end of the spectrum (episodic cholestasis) to the severe end of the spectrum (persistent cholestasis). Sensorineural hearing loss (SNHL) is common across the phenotypic spectrum.
Renal tubular acidosis, distal, 3, with or without sensorineural hearing loss
MedGen UID:
1732975
Concept ID:
C5399980
Disease or Syndrome
Individuals with hereditary distal renal tubular acidosis (dRTA) typically present in infancy with failure to thrive, although later presentations can occur, especially in individuals with autosomal dominant SLC4A1-dRTA. Initial clinical manifestations can also include emesis, polyuria, polydipsia, constipation, diarrhea, decreased appetite, and episodes of dehydration. Electrolyte manifestations include hyperchloremic non-anion gap metabolic acidosis and hypokalemia. Renal complications of dRTA include nephrocalcinosis, nephrolithiasis, medullary cysts, and impaired renal function. Additional manifestations include bone demineralization (rickets, osteomalacia), growth deficiency, sensorineural hearing loss (in ATP6V0A4-, ATP6V1B1-, and FOXI1-dRTA), and hereditary hemolytic anemia (in some individuals with SLC4A1-dRTA).
Renal tubular acidosis, distal, 4, with hemolytic anemia
MedGen UID:
1771439
Concept ID:
C5436235
Disease or Syndrome
Individuals with hereditary distal renal tubular acidosis (dRTA) typically present in infancy with failure to thrive, although later presentations can occur, especially in individuals with autosomal dominant SLC4A1-dRTA. Initial clinical manifestations can also include emesis, polyuria, polydipsia, constipation, diarrhea, decreased appetite, and episodes of dehydration. Electrolyte manifestations include hyperchloremic non-anion gap metabolic acidosis and hypokalemia. Renal complications of dRTA include nephrocalcinosis, nephrolithiasis, medullary cysts, and impaired renal function. Additional manifestations include bone demineralization (rickets, osteomalacia), growth deficiency, sensorineural hearing loss (in ATP6V0A4-, ATP6V1B1-, and FOXI1-dRTA), and hereditary hemolytic anemia (in some individuals with SLC4A1-dRTA).
Rajab interstitial lung disease with brain calcifications 1
MedGen UID:
1750003
Concept ID:
C5436276
Disease or Syndrome
Rajab interstitial lung disease with brain calcifications-1 (RILCBC1) is an autosomal recessive multisystem disorder with a highly variable phenotype. Most patients present in infancy or early childhood with poor growth and interstitial lung disease, which may lead to death. Some may also have liver, skeletal, and renal abnormalities, and most have intracranial calcifications on brain imaging. Some may have early impaired motor development, but most have normal cognitive development (summary by Xu et al., 2018). Genetic Heterogeneity of Rajab Interstitial Lung Disease with Brain Calcifications Also see Rajab interstitial disease with brain calcifications-2 (RILDBC2; 619013), caused by mutation in the FARSA gene (602918).
Hypercholanemia, familial 1
MedGen UID:
1781366
Concept ID:
C5542604
Disease or Syndrome
Familial hypercholanemia-1 (FHCA1) is an autosomal recessive disorder characterized by elevated concentrations of bile acids (usually conjugated), itching, and fat malabsorption, leading to poor overall growth and deficiencies of fat-soluble vitamins. Vitamin D deficiency results in rickets, and vitamin K deficiency results in a coagulopathy (Morton et al., 2000; Shneider et al., 1997; summary by Carlton et al., 2003). See also bile acid conjugation defect-1 (BACD1; 619232), which can also show increased bile acid levels, although the bile acids in BACD1 are unconjugated. Genetic Heterogeneity of FHCA See FHCA2 (619256), caused by mutation in the SLC10A1 gene (182396) on chromosome 14q24.
Bile acid conjugation defect 1
MedGen UID:
1780260
Concept ID:
C5543203
Disease or Syndrome
Bile acid conjugation defect-1 (BACD1) is an autosomal recessive metabolic disorder characterized by onset of symptoms, including jaundice and failure to thrive, in early infancy. The clinical features of the disorder result from impaired absorption of fat-soluble vitamins. Vitamin D deficiency causes rickets with variable growth deficiency, and vitamin K deficiency causes a coagulopathy with decreased production of vitamin K-dependent clotting factors. More variable features may include pruritis, anemia, hepatomegaly, and bile duct proliferation on liver biopsy. Laboratory studies show abnormally increased levels of unconjugated bile acids (summary by Setchell et al., 2013). See also familial hypercholanemia (FHCA; 607748), in which patients have increased serum bile levels of conjugated bile acids.

Professional guidelines

PubMed

Tebben PJ
Endocr Pract 2022 Oct;28(10):1091-1099. Epub 2022 Aug 6 doi: 10.1016/j.eprac.2022.07.005. PMID: 35940468
Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A
Nat Rev Nephrol 2019 Jul;15(7):435-455. doi: 10.1038/s41581-019-0152-5. PMID: 31068690Free PMC Article
Holick MF
Rev Endocr Metab Disord 2017 Jun;18(2):153-165. doi: 10.1007/s11154-017-9424-1. PMID: 28516265

Recent clinical studies

Etiology

Uday S, Högler W
Indian J Med Res 2020 Oct;152(4):356-367. doi: 10.4103/ijmr.IJMR_1961_19. PMID: 33380700Free PMC Article
Taylor SN
Ann Nutr Metab 2020;76 Suppl 2:30-41. Epub 2020 Nov 24 doi: 10.1159/000505635. PMID: 33232959
Carpenter TO, Shaw NJ, Portale AA, Ward LM, Abrams SA, Pettifor JM
Nat Rev Dis Primers 2017 Dec 21;3:17101. doi: 10.1038/nrdp.2017.101. PMID: 29265106
Munns CF, Shaw N, Kiely M, Specker BL, Thacher TD, Ozono K, Michigami T, Tiosano D, Mughal MZ, Mäkitie O, Ramos-Abad L, Ward L, DiMeglio LA, Atapattu N, Cassinelli H, Braegger C, Pettifor JM, Seth A, Idris HW, Bhatia V, Fu J, Goldberg G, Sävendahl L, Khadgawat R, Pludowski P, Maddock J, Hyppönen E, Oduwole A, Frew E, Aguiar M, Tulchinsky T, Butler G, Högler W
J Clin Endocrinol Metab 2016 Feb;101(2):394-415. Epub 2016 Jan 8 doi: 10.1210/jc.2015-2175. PMID: 26745253Free PMC Article
Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL
J Bone Miner Res 2011 Jul;26(7):1381-8. Epub 2011 May 2 doi: 10.1002/jbmr.340. PMID: 21538511Free PMC Article

Diagnosis

Chinoy A, Padidela R
Indian J Pediatr 2023 Jun;90(6):574-581. Epub 2023 Apr 19 doi: 10.1007/s12098-023-04538-4. PMID: 37074534Free PMC Article
Ackah SA, Imel EA
J Clin Endocrinol Metab 2022 Dec 17;108(1):209-220. doi: 10.1210/clinem/dgac488. PMID: 35981346Free PMC Article
Haffner D, Leifheit-Nestler M, Grund A, Schnabel D
Pediatr Nephrol 2022 Sep;37(9):2013-2036. Epub 2021 Dec 15 doi: 10.1007/s00467-021-05328-w. PMID: 34910242Free PMC Article
Uday S, Högler W
Indian J Med Res 2020 Oct;152(4):356-367. doi: 10.4103/ijmr.IJMR_1961_19. PMID: 33380700Free PMC Article
Carpenter TO, Shaw NJ, Portale AA, Ward LM, Abrams SA, Pettifor JM
Nat Rev Dis Primers 2017 Dec 21;3:17101. doi: 10.1038/nrdp.2017.101. PMID: 29265106

Therapy

Miller WL, Imel EA
Horm Res Paediatr 2022;95(6):579-592. Epub 2022 Nov 29 doi: 10.1159/000527011. PMID: 36446330
Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB
Nat Rev Endocrinol 2022 Feb;18(2):96-110. Epub 2021 Nov 23 doi: 10.1038/s41574-021-00593-z. PMID: 34815552Free PMC Article
Taylor SN
Ann Nutr Metab 2020;76 Suppl 2:30-41. Epub 2020 Nov 24 doi: 10.1159/000505635. PMID: 33232959
Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, Simmons JH, Padidela R, Namba N, Cheong HI, Pitukcheewanont P, Sochett E, Högler W, Muroya K, Tanaka H, Gottesman GS, Biggin A, Perwad F, Mao M, Chen CY, Skrinar A, San Martin J, Portale AA
Lancet 2019 Jun 15;393(10189):2416-2427. Epub 2019 May 16 doi: 10.1016/S0140-6736(19)30654-3. PMID: 31104833Free PMC Article
Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro M, Giustina A, Bilezikian J
Endocr Rev 2019 Aug 1;40(4):1109-1151. doi: 10.1210/er.2018-00126. PMID: 30321335Free PMC Article

Prognosis

Albuquerque ALB, Dos Santos Borges R, Conegundes AF, Dos Santos EE, Fu FMM, Araujo CT, Vaz de Castro PAS, Simões E Silva AC
World J Pediatr 2023 Jul;19(7):619-634. Epub 2023 Feb 2 doi: 10.1007/s12519-023-00685-y. PMID: 36729281
Ackah SA, Imel EA
J Clin Endocrinol Metab 2022 Dec 17;108(1):209-220. doi: 10.1210/clinem/dgac488. PMID: 35981346Free PMC Article
Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro M, Giustina A, Bilezikian J
Endocr Rev 2019 Aug 1;40(4):1109-1151. doi: 10.1210/er.2018-00126. PMID: 30321335Free PMC Article
Baroncelli GI, Toschi B, Bertelloni S
Curr Opin Endocrinol Diabetes Obes 2012 Dec;19(6):460-7. doi: 10.1097/MED.0b013e328358be97. PMID: 23108197
Kitagawa T
Proc Jpn Acad Ser B Phys Biol Sci 2012;88(5):192-200. doi: 10.2183/pjab.88.192. PMID: 22687740Free PMC Article

Clinical prediction guides

Bouillon R, Manousaki D, Rosen C, Trajanoska K, Rivadeneira F, Richards JB
Nat Rev Endocrinol 2022 Feb;18(2):96-110. Epub 2021 Nov 23 doi: 10.1038/s41574-021-00593-z. PMID: 34815552Free PMC Article
Zittermann A, Trummer C, Theiler-Schwetz V, Lerchbaum E, März W, Pilz S
Int J Mol Sci 2021 Mar 12;22(6) doi: 10.3390/ijms22062896. PMID: 33809311Free PMC Article
Taylor SN
Ann Nutr Metab 2020;76 Suppl 2:30-41. Epub 2020 Nov 24 doi: 10.1159/000505635. PMID: 33232959
Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, Simmons JH, Padidela R, Namba N, Cheong HI, Pitukcheewanont P, Sochett E, Högler W, Muroya K, Tanaka H, Gottesman GS, Biggin A, Perwad F, Mao M, Chen CY, Skrinar A, San Martin J, Portale AA
Lancet 2019 Jun 15;393(10189):2416-2427. Epub 2019 May 16 doi: 10.1016/S0140-6736(19)30654-3. PMID: 31104833Free PMC Article
Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CF, Lazaretti-Castro M, Giustina A, Bilezikian J
Endocr Rev 2019 Aug 1;40(4):1109-1151. doi: 10.1210/er.2018-00126. PMID: 30321335Free PMC Article

Recent systematic reviews

Tan ML, Abrams SA, Osborn DA
Cochrane Database Syst Rev 2020 Dec 11;12(12):CD013046. doi: 10.1002/14651858.CD013046.pub2. PMID: 33305822Free PMC Article
Creo AL, Thacher TD, Pettifor JM, Strand MA, Fischer PR
Paediatr Int Child Health 2017 May;37(2):84-98. Epub 2016 Dec 6 doi: 10.1080/20469047.2016.1248170. PMID: 27922335
Harvey NC, Holroyd C, Ntani G, Javaid K, Cooper P, Moon R, Cole Z, Tinati T, Godfrey K, Dennison E, Bishop NJ, Baird J, Cooper C
Health Technol Assess 2014 Jul;18(45):1-190. doi: 10.3310/hta18450. PMID: 25025896Free PMC Article
Cranney A, Horsley T, O'Donnell S, Weiler H, Puil L, Ooi D, Atkinson S, Ward L, Moher D, Hanley D, Fang M, Yazdi F, Garritty C, Sampson M, Barrowman N, Tsertsvadze A, Mamaladze V
Evid Rep Technol Assess (Full Rep) 2007 Aug;(158):1-235. PMID: 18088161Free PMC Article
van Sleuwen BE, Engelberts AC, Boere-Boonekamp MM, Kuis W, Schulpen TW, L'Hoir MP
Pediatrics 2007 Oct;120(4):e1097-106. doi: 10.1542/peds.2006-2083. PMID: 17908730

Supplemental Content

Table of contents

    Clinical resources

    Practice guidelines

    • PubMed
      See practice and clinical guidelines in PubMed. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.
    • Bookshelf
      See practice and clinical guidelines in NCBI Bookshelf. The search results may include broader topics and may not capture all published guidelines. See the FAQ for details.

    Recent activity

    Your browsing activity is empty.

    Activity recording is turned off.

    Turn recording back on

    See more...