U.S. flag

An official website of the United States government

We are planning the future of MedGen. Fill out this survey or email us at medgen_help@ncbi.nlm.nih.gov to tell us how it can work better for you.

Search results

Items: 1 to 20 of 38

1.

Ethylmalonic encephalopathy

Ethylmalonic encephalopathy (EE) is a severe, early-onset, progressive disorder characterized by developmental delay / mild-to-severe intellectual disability; generalized infantile hypotonia that evolves into hypertonia, spasticity, and (in some instances) dystonia; generalized tonic-clonic seizures; and generalized microvascular damage (diffuse and spontaneous relapsing petechial purpura, hemorrhagic suffusions of mucosal surfaces, and chronic hemorrhagic diarrhea). Infants sometimes have frequent vomiting and loss of social interaction. Speech is delayed and in some instances absent. Swallowing difficulties and failure to thrive are common. Children may be unable to walk without support and may be wheelchair bound. Neurologic deterioration accelerates following intercurrent infectious illness, and the majority of children die in the first decade. [from GeneReviews]

MedGen UID:
355966
Concept ID:
C1865349
Disease or Syndrome
2.

Mitochondrial complex IV deficiency, nuclear type 1

Mitochondrial complex IV deficiency nuclear type 1 (MC4DN1) is an autosomal recessive metabolic disorder characterized by rapidly progressive neurodegeneration and encephalopathy with loss of motor and cognitive skills between about 5 and 18 months of age after normal early development. Affected individuals show hypotonia, failure to thrive, loss of the ability to sit or walk, poor communication, and poor eye contact. Other features may include oculomotor abnormalities, including slow saccades, strabismus, ophthalmoplegia, and nystagmus, as well as deafness, apneic episodes, ataxia, tremor, and brisk tendon reflexes. Brain imaging shows bilateral symmetric lesions in the basal ganglia, consistent with a clinical diagnosis of Leigh syndrome (see 256000). Some patients may also have abnormalities in the brainstem and cerebellum. Laboratory studies usually show increased serum and CSF lactate and decreased levels and activity of mitochondrial respiratory complex IV in patient tissues. There is phenotypic variability, but death in childhood, often due to central respiratory failure, is common (summary by Tiranti et al., 1998; Tiranti et al., 1999; Teraoka et al., 1999; Poyau et al., 2000) Genetic Heterogeneity of Mitochondrial Complex IV Deficiency Most isolated COX deficiencies are inherited as autosomal recessive disorders caused by mutations in nuclear-encoded genes; mutations in the mtDNA-encoded COX subunit genes are relatively rare (Shoubridge, 2001; Sacconi et al., 2003). Mitochondrial complex IV deficiency caused by mutation in nuclear-encoded genes, in addition to MC4DN1, include MC4DN2 (604377), caused by mutation in the SCO2 gene (604272); MC4DN3 (619046), caused by mutation in the COX10 gene (602125); MC4DN4 (619048), caused by mutation in the SCO1 gene (603664); MC4DN5 (220111), caused by mutation in the LRPPRC gene (607544); MC4DN6 (615119), caused by mutation in the COX15 gene (603646); MC4DN7 (619051), caused by mutation in the COX6B1 gene (124089); MC4DN8 (619052), caused by mutation in the TACO1 gene (612958); MC4DN9 (616500), caused by mutation in the COA5 gene (613920); MC4DN10 (619053), caused by mutation in the COX14 gene (614478); MC4DN11 (619054), caused by mutation in the COX20 gene (614698); MC4DN12 (619055), caused by mutation in the PET100 gene (614770); MC4DN13 (616501), caused by mutation in the COA6 gene (614772); MC4DN14 (619058), caused by mutation in the COA3 gene (614775); MC4DN15 (619059), caused by mutation in the COX8A gene (123870); MC4DN16 (619060), caused by mutation in the COX4I1 gene (123864); MC4DN17 (619061), caused by mutation in the APOPT1 gene (616003); MC4DN18 (619062), caused by mutation in the COX6A2 gene (602009); MC4DN19 (619063), caused by mutation in the PET117 gene (614771); MC4DN20 (619064), caused by mutation in the COX5A gene (603773); MC4DN21 (619065), caused by mutation in the COXFA4 gene (603883); MC4DN22 (619355), caused by mutation in the COX16 gene (618064); and MC4DN23 (620275), caused by mutation in the COX11 gene (603648). Mitochondrial complex IV deficiency has been associated with mutations in several mitochondrial genes, including MTCO1 (516030), MTCO2 (516040), MTCO3 (516050), MTTS1 (590080), MTTL1 (590050), and MTTN (590010). [from OMIM]

MedGen UID:
1750917
Concept ID:
C5435656
Disease or Syndrome
3.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 1

POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+"). [from GeneReviews]

MedGen UID:
371919
Concept ID:
C1834846
Disease or Syndrome
4.

Mitochondrial DNA depletion syndrome 1

Mitochondrial neurogastrointestinal encephalopathy (MNGIE) disease is characterized by progressive gastrointestinal dysmotility (manifesting as early satiety, nausea, dysphagia, gastroesophageal reflux, postprandial emesis, episodic abdominal pain and/or distention, and diarrhea); cachexia; ptosis/ophthalmoplegia or ophthalmoparesis; leukoencephalopathy; and demyelinating peripheral neuropathy (manifesting as paresthesias (tingling, numbness, and pain) and symmetric and distal weakness more prominently affecting the lower extremities). The order in which manifestations appear is unpredictable. Onset is usually between the first and fifth decades; in about 60% of individuals, symptoms begin before age 20 years. [from GeneReviews]

MedGen UID:
1631838
Concept ID:
C4551995
Disease or Syndrome
5.

Mitochondrial DNA depletion syndrome 13

FBXL4-related encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome is a multi-system disorder characterized primarily by congenital or early-onset lactic acidosis and growth failure, feeding difficulty, hypotonia, and developmental delay. Other neurologic manifestations can include seizures, movement disorders, ataxia, autonomic dysfunction, and stroke-like episodes. All affected individuals alive at the time they were reported (median age: 3.5 years) demonstrated significant developmental delay. Other findings can involve the heart (hypertrophic cardiomyopathy, congenital heart malformations, arrhythmias), liver (mildly elevated transaminases), eyes (cataract, strabismus, nystagmus, optic atrophy), hearing (sensorineural hearing loss), and bone marrow (neutropenia, lymphopenia). Survival varies; the median age of reported deaths was two years (range 2 days – 75 months), although surviving individuals as old as 36 years have been reported. To date FBXL4-related mtDNA depletion syndrome has been reported in 50 individuals. [from GeneReviews]

MedGen UID:
815922
Concept ID:
C3809592
Disease or Syndrome
6.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 1

POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+"). [from GeneReviews]

MedGen UID:
897191
Concept ID:
C4225153
Disease or Syndrome
7.

Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis

POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+"). [from GeneReviews]

MedGen UID:
375302
Concept ID:
C1843851
Disease or Syndrome
8.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 3

Progressive external ophthalmoplegia is characterized by multiple mitochondrial DNA deletions in skeletal muscle. The most common clinical features include adult onset of weakness of the external eye muscles and exercise intolerance. Patients with C10ORF2-linked adPEO may have other clinical features including proximal muscle weakness, ataxia, peripheral neuropathy, cardiomyopathy, cataracts, depression, and endocrine abnormalities (summary by Fratter et al., 2010). For a general phenotypic description and a discussion of genetic heterogeneity of autosomal dominant progressive external ophthalmoplegia, see PEOA1 (157640). PEO caused by mutations in the POLG gene (174763) is associated with more complicated phenotypes than PEO caused by mutations in the SLC25A4 (103220) or C10ORF2 genes (Lamantea et al., 2002). [from OMIM]

MedGen UID:
373087
Concept ID:
C1836439
Disease or Syndrome
9.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 2

Progressive external ophthalmoplegia is characterized by multiple mitochondrial DNA deletions in skeletal muscle. The most common clinical features include adult onset of weakness of the external eye muscles and exercise intolerance. Both autosomal dominant and autosomal recessive inheritance can occur; autosomal recessive inheritance is usually more severe (Filosto et al., 2003; Luoma et al., 2004). PEO caused by mutations in the POLG gene are associated with more complicated phenotypes than those forms caused by mutations in the ANT1 or C10ORF2 genes (Lamantea et al., 2002). For a general phenotypic description and a discussion of genetic heterogeneity of autosomal dominant progressive external ophthalmoplegia, see PEOA1 (157640). [from OMIM]

MedGen UID:
322925
Concept ID:
C1836460
Disease or Syndrome
10.

Mitochondrial DNA depletion syndrome 12B (cardiomyopathic type), autosomal recessive

Mitochondrial DNA depletion syndrome-12B is an autosomal recessive mitochondrial disorder characterized by childhood onset of slowly progressive hypertrophic cardiomyopathy and generalized skeletal myopathy resulting in exercise intolerance, and, in some patients, muscle weakness and atrophy. Skeletal muscle biopsy shows ragged-red fibers, mtDNA depletion, and accumulation of abnormal mitochondria (summary by Echaniz-Laguna et al., 2012). For a discussion of genetic heterogeneity of mtDNA depletion syndromes, see MTDPS1 (603041). [from OMIM]

MedGen UID:
815773
Concept ID:
C3809443
Disease or Syndrome
11.

Myopathy, lactic acidosis, and sideroblastic anemia 1

Myopathy, lactic acidosis, and sideroblastic anemia (MLASA) is a rare autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow (Bykhovskaya et al., 2004). Genetic Heterogeneity of Myopathy, Lactic Acidosis, and Sideroblastic Anemia MLASA2 (613561) is caused by mutation in the YARS2 gene (610957) on chromosome 12p11. MLASA3 (500011) is caused by heteroplasmic mutation in the mitochondrially-encoded MTATP6 gene (516060). [from OMIM]

MedGen UID:
1634824
Concept ID:
C4551958
Disease or Syndrome
12.

Mitochondrial DNA depletion syndrome 4b

POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+"). [from GeneReviews]

MedGen UID:
462264
Concept ID:
C3150914
Disease or Syndrome
13.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 4

Progressive external ophthalmoplegia-4 (PEOA4) is an autosomal dominant form of mitochondrial disease that variably affects skeletal muscle, the nervous system, the liver, and the gastrointestinal tract. Age at onset ranges from infancy to adulthood. The phenotype ranges from relatively mild, with adult-onset skeletal muscle weakness and weakness of the external eye muscles, to severe, with a multisystem disorder characterized by delayed psychomotor development, lactic acidosis, constipation, and liver involvement (summary by Young et al., 2011). For a general phenotypic description and a discussion of genetic heterogeneity of autosomal dominant progressive external ophthalmoplegia, see PEOA1 (157640). [from OMIM]

MedGen UID:
350480
Concept ID:
C1864668
Disease or Syndrome
14.

Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1

Mitochondrial complex IV deficiency nuclear type 2 (MC4DN2) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms at birth or in the first weeks or months of life. Affected individuals have severe hypotonia, often associated with feeding difficulties and respiratory insufficiency necessitating tube feeding and mechanical ventilation. The vast majority of patients develop hypertrophic cardiomyopathy in the first days or weeks of life, which usually leads to death in infancy or early childhood. Patients also show neurologic abnormalities, including developmental delay, nystagmus, fasciculations, dystonia, EEG changes, and brain imaging abnormalities compatible with a diagnosis of Leigh syndrome (see 256000). There may also be evidence of systemic involvement with hepatomegaly and myopathy, although neurogenic muscle atrophy is more common and may resemble spinal muscular atrophy type I (SMA1; 253300). Serum lactate is increased, and laboratory studies show decreased mitochondrial complex IV protein and activity levels in various tissues, including heart and skeletal muscle. Most patients die in infancy of cardiorespiratory failure (summary by Papadopoulou et al., 1999). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110. [from OMIM]

MedGen UID:
1748867
Concept ID:
C5399977
Disease or Syndrome
15.

Myopathy, lactic acidosis, and sideroblastic anemia 2

Myopathy, lactic acidosis, and sideroblastic anemia-2 (MLASA2) is an autosomal recessive disorder of the mitochondrial respiratory chain. The disorder shows marked phenotypic variability: some patients have a severe multisystem disorder from infancy, including cardiomyopathy and respiratory insufficiency resulting in early death, whereas others present in the second or third decade of life with sideroblastic anemia and mild muscle weakness (summary by Riley et al., 2013). For a discussion of genetic heterogeneity of MLASA, see MLASA1 (600462). [from OMIM]

MedGen UID:
462152
Concept ID:
C3150802
Disease or Syndrome
16.

Combined oxidative phosphorylation defect type 8

Combined oxidative phosphorylation deficiency-8 (COXPD8) is an autosomal recessive disorder caused by dysfunction of the mitochondrial respiratory chain. The main clinical manifestation is a lethal infantile hypertrophic cardiomyopathy, but there may also be subtle skeletal muscle and brain involvement. Biochemical studies show combined respiratory chain complex deficiencies in complexes I, III, and IV in cardiac muscle, skeletal muscle, and brain. The liver is not affected (summary by Gotz et al., 2011). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060). [from OMIM]

MedGen UID:
1377817
Concept ID:
C4518839
Disease or Syndrome
17.

Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 3

Any autosomal recessive progressive external ophthalmoplegia in which the cause of the disease is a mutation in the TK2 gene. [from MONDO]

MedGen UID:
934701
Concept ID:
C4310734
Disease or Syndrome
18.

Leukoencephalopathy, progressive, with ovarian failure

Progressive leukoencephalopathy with ovarian failure is an autosomal recessive neurodegenerative disorder characterized by loss of motor and cognitive skills, usually with onset in young adulthood. Some patients may have a history of delayed motor development or learning difficulties in early childhood. Neurologic decline is severe, usually resulting in gait difficulties, ataxia, spasticity, and cognitive decline and dementia. Most patients lose speech and become wheelchair-bound or bedridden. Brain MRI shows progressive white matter signal abnormalities in the deep white matter. Affected females develop premature ovarian failure (summary by Dallabona et al., 2014). [from OMIM]

MedGen UID:
863025
Concept ID:
C4014588
Disease or Syndrome
19.

Infantile hypertrophic cardiomyopathy due to MRPL44 deficiency

Combined oxidative phosphorylation deficiency-16 (COXPD16) is an autosomal recessive multisystem disorder with hypertrophic cardiomyopathy as a major feature. [from OMIM]

MedGen UID:
815669
Concept ID:
C3809339
Disease or Syndrome
20.

Neonatal-onset encephalopathy with rigidity and seizures

Lethal neonatal rigidity and multifocal seizure syndrome (RMFSL) is a severe autosomal recessive epileptic encephalopathy characterized by onset of rigidity and intractable seizures at or soon after birth. Affected infants achieve no developmental milestones and die within the first months or years of life (summary by Saitsu et al., 2014). [from OMIM]

MedGen UID:
482659
Concept ID:
C3281029
Disease or Syndrome

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
External link. Please review our privacy policy.