U.S. flag

An official website of the United States government

We are planning the future of MedGen. Fill out this survey or email us at medgen_help@ncbi.nlm.nih.gov to tell us how it can work better for you.

Search results

Items: 11

1.

Propionic acidemia

The spectrum of propionic acidemia (PA) ranges from neonatal-onset to late-onset disease. Neonatal-onset PA, the most common form, is characterized by a healthy newborn with poor feeding and decreased arousal in the first few days of life, followed by progressive encephalopathy of unexplained origin. Without prompt diagnosis and management, this is followed by progressive encephalopathy manifesting as lethargy, seizures, or coma that can result in death. It is frequently accompanied by metabolic acidosis with anion gap, lactic acidosis, ketonuria, hypoglycemia, hyperammonemia, and cytopenias. Individuals with late-onset PA may remain asymptomatic and suffer a metabolic crisis under catabolic stress (e.g., illness, surgery, fasting) or may experience a more insidious onset with the development of multiorgan complications including vomiting, protein intolerance, failure to thrive, hypotonia, developmental delays or regression, movement disorders, or cardiomyopathy. Isolated cardiomyopathy can be observed on rare occasion in the absence of clinical metabolic decompensation or neurocognitive deficits. Manifestations of neonatal and late-onset PA over time can include growth impairment, intellectual disability, seizures, basal ganglia lesions, pancreatitis, and cardiomyopathy. Other rarely reported complications include optic atrophy, hearing loss, premature ovarian insufficiency, and chronic renal failure. [from GeneReviews]

MedGen UID:
75694
Concept ID:
C0268579
Disease or Syndrome
2.

Medium-chain acyl-coenzyme A dehydrogenase deficiency

Medium-chain acyl-coenzyme A dehydrogenase (MCAD) is one of the enzymes involved in mitochondrial fatty acid ß-oxidation. Fatty acid ß-oxidation fuels hepatic ketogenesis, which provides a major source of energy once hepatic glycogen stores become depleted during prolonged fasting and periods of higher energy demands. MCAD deficiency is the most common disorder of fatty acid ß-oxidation and one of the most common inborn errors of metabolism. Most children are now diagnosed through newborn screening. Clinical symptoms in a previously apparently healthy child with MCAD deficiency include hypoketotic hypoglycemia and vomiting that may progress to lethargy, seizures, and coma triggered by a common illness. Hepatomegaly and liver disease are often present during an acute episode. Children appear normal at birth and – if not identified through newborn screening – typically present between age three and 24 months, although presentation even as late as adulthood is possible. The prognosis is excellent once the diagnosis is established and frequent feedings are instituted to avoid any prolonged periods of fasting. [from GeneReviews]

MedGen UID:
65086
Concept ID:
C0220710
Disease or Syndrome
3.

Isovaleryl-CoA dehydrogenase deficiency

Isovaleric acidemia (IVA) is an inborn error of leucine metabolism caused by a deficiency of isovaleryl-CoA dehydrogenase. It can present with severe neonatal ketoacidosis leading to death, but in milder cases recurrent episodes of ketoacidosis of varying degree occur later in infancy and childhood (summary by Vockley et al., 1991). [from OMIM]

MedGen UID:
82822
Concept ID:
C0268575
Disease or Syndrome
4.

3-methylcrotonyl-CoA carboxylase 2 deficiency

3-Methylcrotonylglycinuria is an autosomal recessive disorder of leucine catabolism. The clinical phenotype is highly variable, ranging from neonatal onset with severe neurologic involvement to asymptomatic adults. There is a characteristic organic aciduria with massive excretion of 3-hydroxyisovaleric acid and 3-methylcrotonylglycine, usually in combination with a severe secondary carnitine deficiency. MCC activity in extracts of cultured fibroblasts of patients is usually less than 2% of control (summary by Baumgartner et al., 2001). Also see 3-methylcrotonylglycinuria I (MCC1D; 210200), caused by mutation in the alpha subunit of 3-methylcrotonyl-CoA carboxylase (MCCC1; 609010). [from OMIM]

MedGen UID:
347898
Concept ID:
C1859499
Disease or Syndrome
5.

Hyperglycinuria

The imino acids, proline and hydroxyproline, share a renal tubular reabsorptive mechanism with glycine. Iminoglycinuria (IG; 242600), a benign inborn error of amino acid transport, is also a normal finding in neonates and infants under 6 months of age (Chesney, 2001). Early studies of families with iminoglycinuria suggested genetic complexity, with homozygotes developing IG and heterozygotes manifesting only hyperglycinuria (HG) (summary by Broer et al., 2008). A phenotype of combined glucosuria and glycinuria has been described (see 138070). [from OMIM]

MedGen UID:
107456
Concept ID:
C0543541
Disease or Syndrome
6.

Proline dehydrogenase deficiency

Phang et al. (2001) noted that prospective studies of HPI probands identified through newborn screening as well as reports of several families have suggested that it is a metabolic disorder not clearly associated with clinical manifestations. Phang et al. (2001) concluded that HPI is a relatively benign condition in most individuals under most circumstances. However, other reports have suggested that some patients have a severe phenotype with neurologic manifestations, including epilepsy and mental retardation (Jacquet et al., 2003). Genetic Heterogeneity of Hyperprolinemia See also hyperprolinemia type II (HYRPRO2; 239510), which is caused by mutation in the gene encoding pyrroline-5-carboxylate dehydrogenase (P5CDH, ALDH4A1; 606811) on chromosome 1p36. [from OMIM]

MedGen UID:
120645
Concept ID:
C0268529
Disease or Syndrome
7.

Multiple mitochondrial dysfunctions syndrome 1

Multiple mitochondrial dysfunctions syndrome-1 (MMDS1) is a severe autosomal recessive disorder of systemic energy metabolism, resulting in weakness, respiratory failure, lack of neurologic development, lactic acidosis, and early death (Seyda et al., 2001). Genetic Heterogeneity of Multiple Mitochondrial Dysfunctions Syndrome See also MMDS2 (614299), caused by mutation in the BOLA3 gene (613183) on chromosome 2p13; MMDS3 (615330), caused by mutation in the IBA57 gene (615316) on chromosome 1q42; MMDS4 (616370), caused by mutation in the ISCA2 gene (615317) on chromosome 14q24; MMDS5 (617613), caused by mutation in the ISCA1 gene (611006) on chromosome 9q21; MMDS6 (617954), caused by mutation in the PMPCB gene (603131) on chromosome 7q22; MMDS7 (620423), caused by mutation in the GCSH gene (238330) on chromosome 16q23; MMDS8 (251900), caused by mutation in the FDX2 gene (614585) on chromosome 19p13; MMDS9A (617717) and MMDS9B (620887), both caused by mutation in the FDXR gene (103270) on chromosome 17q25. [from OMIM]

MedGen UID:
478062
Concept ID:
C3276432
Disease or Syndrome
8.

Iminoglycinuria

The imino acids, proline and hydroxyproline, share a renal tubular reabsorptive mechanism with glycine. Iminoglycinuria (IG), a benign inborn error of amino acid transport, is also a normal finding in neonates and infants under 6 months of age (Chesney, 2001). Early studies of families with iminoglycinuria suggested genetic complexity, with homozygotes developing IG and heterozygotes manifesting only hyperglycinuria (HG; 138500) (summary by Broer et al., 2008). Iminoglycinuria also occurs as part of the generalized amino aciduria of the Fanconi renotubular syndrome (134600). [from OMIM]

MedGen UID:
124342
Concept ID:
C0268654
Disease or Syndrome
9.

Hyperprolinemia type 2

Hyperprolinemia is an excess of a particular protein building block (amino acid), called proline, in the blood. This condition generally occurs when proline is not broken down properly by the body. There are two forms of hyperprolinemia, called type I and type II.

Hyperprolinemia can also occur with other conditions, such as malnutrition or liver disease. In particular, individuals with conditions that cause elevated levels of a chemical called lactic acid in the blood (lactic acidosis) may have hyperprolinemia as well, because lactic acid stops (inhibits) the breakdown of proline.

Hyperprolinemia type II results in proline levels in the blood between 10 and 15 times higher than normal, and high levels of a related compound called pyrroline-5-carboxylate. This form of the disorder is more likely than type I to involve seizures or intellectual disability that vary in severity.

People with hyperprolinemia type I often do not show any symptoms, although they have proline levels in their blood between 3 and 10 times the normal level. Some individuals with hyperprolinemia type I exhibit seizures, intellectual disability, or other neurological or psychiatric problems. [from MedlinePlus Genetics]

MedGen UID:
419175
Concept ID:
C2931835
Disease or Syndrome
10.

Glucoglycinuria

MedGen UID:
78686
Concept ID:
C0268536
Disease or Syndrome
11.

Indolylacroyl glycinuria with intellectual disability

MedGen UID:
340949
Concept ID:
C1855738
Disease or Syndrome

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
External link. Please review our privacy policy.