U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 46

1.

3-Methylglutaconic aciduria type 2

Barth syndrome is characterized in affected males by cardiomyopathy, neutropenia, skeletal myopathy, prepubertal growth delay, and distinctive facial gestalt (most evident in infancy); not all features may be present in a given affected male. Cardiomyopathy, which is almost always present before age five years, is typically dilated cardiomyopathy with or without endocardial fibroelastosis or left ventricular noncompaction; hypertrophic cardiomyopathy can also occur. Heart failure is a significant cause of morbidity and mortality; risk of arrhythmia and sudden death is increased. Neutropenia is most often associated with mouth ulcers, pneumonia, and sepsis. The nonprogressive myopathy predominantly affects the proximal muscles, and results in early motor delays. Prepubertal growth delay is followed by a postpubertal growth spurt with remarkable "catch-up" growth. Heterozygous females who have a normal karyotype are asymptomatic and have normal biochemical studies. [from GeneReviews]

MedGen UID:
107893
Concept ID:
C0574083
Disease or Syndrome
2.

Actin accumulation myopathy

Congenital myopathy-2A (CMYP2A) is an autosomal dominant disorder of the skeletal muscle characterized by infantile- or childhood-onset myopathy with delayed motor milestones and nonprogressive muscle weakness. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype (CMYP2C; 620278). Some patients with de novo mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation. Less frequently, autosomal dominant transmission of the disorder within a family may occur when the ACTA1 mutation produces a phenotype compatible with adult life. Of note, intrafamilial variability has also been reported: a severely affected proband may be identified and then mildly affected or even asymptomatic relatives are found to carry the same mutation. The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021). The most common histologic finding on muscle biopsy in patients with ACTA1 mutations is the presence of 'nemaline rods,' which represent abnormal thread- or rod-like structures ('nema' is Greek for 'thread'). However, skeletal muscle biopsy from patients with mutations in the ACTA1 gene can show a range of pathologic phenotypes. These include classic rods, intranuclear rods, clumped filaments, cores, or fiber-type disproportion, all of which are nonspecific pathologic findings and not pathognomonic of a specific congenital myopathy. Most patients have clinically severe disease, regardless of the histopathologic phenotype (Nowak et al., 2007; Sewry et al., 2019). ACTA1 mutations are the second most common cause of congenital myopathies classified histologically as 'nemaline myopathy' after mutations in the NEB gene (161650). ACTA1 mutations are overrepresented in the severe phenotype with early death (Laing et al., 2009). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030). [from OMIM]

MedGen UID:
777997
Concept ID:
C3711389
Disease or Syndrome
3.

Nemaline myopathy 2

Nemaline myopathy-2 (NEM2) is an autosomal recessive skeletal muscle disorder with a wide range of severity. The most common clinical presentation is early-onset (in infancy or childhood) muscle weakness predominantly affecting proximal limb muscles. Muscle biopsy shows accumulation of Z-disc and thin filament proteins into aggregates named 'nemaline bodies' or 'nemaline rods,' usually accompanied by disorganization of the muscle Z discs. The clinical and histologic spectrum of entities caused by variants in the NEB gene is a continuum, ranging in severity. The distribution of weakness can vary from generalized muscle weakness, more pronounced in proximal limb muscles, to distal-only involvement, although neck flexor weakness appears to be rather consistent. Histologic patterns range from a severe usually nondystrophic disturbance of the myofibrillar pattern to an almost normal pattern, with or without nemaline bodies, sometimes combined with cores (summary by Lehtokari et al., 2014). Genetic Heterogeneity of Nemaline Myopathy See also NEM1 (255310), caused by mutation in the tropomyosin-3 gene (TPM3; 191030) on chromosome 1q22; NEM3 (161800), caused by mutation in the alpha-actin-1 gene (ACTA1; 102610) on chromosome 1q42; NEM4 (609285), caused by mutation in the beta-tropomyosin gene (TPM2; 190990) on chromosome 9p13; NEM5A (605355), also known as Amish nemaline myopathy, NEM5B (620386), and NEM5C (620389), all caused by mutation in the troponin T1 gene (TNNT1; 191041) on chromosome 19q13; NEM6 (609273), caused by mutation in the KBTBD13 gene (613727) on chromosome 15q22; NEM7 (610687), caused by mutation in the cofilin-2 gene (CFL2; 601443) on chromosome 14q13; NEM8 (615348), caused by mutation in the KLHL40 gene (615340), on chromosome 3p22; NEM9 (615731), caused by mutation in the KLHL41 gene (607701) on chromosome 2q31; NEM10 (616165), caused by mutation in the LMOD3 gene (616112) on chromosome 3p14; and NEM11 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. Several of the genes encode components of skeletal muscle sarcomeric thin filaments (Sanoudou and Beggs, 2001). Mutations in the NEB gene are the most common cause of nemaline myopathy (Lehtokari et al., 2006). [from OMIM]

MedGen UID:
342534
Concept ID:
C1850569
Disease or Syndrome
4.

Creatine transporter deficiency

The creatine deficiency disorders (CDDs), inborn errors of creatine metabolism and transport, comprise three disorders: the creatine biosynthesis disorders guanidinoacetate methyltransferase (GAMT) deficiency and L-arginine:glycine amidinotransferase (AGAT) deficiency; and creatine transporter (CRTR) deficiency. Developmental delay and cognitive dysfunction or intellectual disability and speech-language disorder are common to all three CDDs. Onset of clinical manifestations of GAMT deficiency (reported in ~130 individuals) is between ages three months and two years; in addition to developmental delays, the majority of individuals have epilepsy and develop a behavior disorder (e.g., hyperactivity, autism, or self-injurious behavior), and about 30% have movement disorder. AGAT deficiency has been reported in 16 individuals; none have had epilepsy or movement disorders. Clinical findings of CRTR deficiency in affected males (reported in ~130 individuals) in addition to developmental delays include epilepsy (variable seizure types and may be intractable) and behavior disorders (e.g., attention deficit and/or hyperactivity, autistic features, impulsivity, social anxiety), hypotonia, and (less commonly) a movement disorder. Poor weight gain with constipation and prolonged QTc on EKG have been reported. While mild-to-moderate intellectual disability is commonly observed up to age four years, the majority of adult males with CRTR deficiency have been reported to have severe intellectual disability. Females heterozygous for CRTR deficiency are typically either asymptomatic or have mild intellectual disability, although a more severe phenotype resembling the male phenotype has been reported. [from GeneReviews]

MedGen UID:
337451
Concept ID:
C1845862
Disease or Syndrome
5.

Congenital multicore myopathy with external ophthalmoplegia

Congenital myopathy-1B (CMYP1B) is an autosomal recessive disorder of skeletal muscle characterized by severe hypotonia and generalized muscle weakness apparent soon after birth or in early childhood with delayed motor development, generalized muscle weakness and atrophy, and difficulty walking or running. Affected individuals show proximal muscle weakness with axial and shoulder girdle involvement, external ophthalmoplegia, and bulbar weakness, often resulting in feeding difficulties and respiratory insufficiency. Orthopedic complications such as joint laxity, distal contractures, hip dislocation, cleft palate, and scoliosis are commonly observed. Serum creatine kinase is normal. The phenotype is variable in severity (Jungbluth et al., 2005; Bharucha-Goebel et al., 2013). Some patients show symptoms in utero, including reduced fetal movements, polyhydramnios, and intrauterine growth restriction. The most severely affected patients present in utero with fetal akinesia, arthrogryposis, and lung hypoplasia resulting in fetal or perinatal death (McKie et al., 2014). Skeletal muscle biopsy of patients with recessive RYR1 mutations can show variable features, including multiminicores (Ferreiro and Fardeau, 2002), central cores (Jungbluth et al., 2002), congenital fiber-type disproportion (CFTD) (Monnier et al., 2009), and centronuclear myopathy (Wilmshurst et al., 2010). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]

MedGen UID:
340597
Concept ID:
C1850674
Disease or Syndrome
6.

Congenital myopathy 23

Nemaline myopathy is divided into six types. In order of decreasing severity, the types are: severe congenital, Amish, intermediate congenital, typical congenital, childhood-onset, and adult-onset. The types are distinguished by the age when symptoms first appear and the severity of symptoms; however, there is overlap among the various types. The severe congenital type is the most life-threatening. Most individuals with this type do not survive past early childhood due to respiratory failure. The Amish type solely affects the Old Order Amish population of Pennsylvania and is typically fatal in early childhood. The most common type of nemaline myopathy is the typical congenital type, which is characterized by muscle weakness and feeding problems beginning in infancy. Most of these individuals do not have severe breathing problems and can walk unassisted. People with the childhood-onset type usually develop muscle weakness in adolescence. The adult-onset type is the mildest of all the various types. People with this type usually develop muscle weakness between ages 20 and 50.

Nemaline myopathy is a disorder that primarily affects skeletal muscles, which are muscles that the body uses for movement. People with nemaline myopathy have muscle weakness (myopathy) throughout the body, but it is typically most severe in the muscles of the face; neck; trunk; and other muscles close to the center of the body (proximal muscles), such as those of the upper arms and legs. This weakness can worsen over time. Affected individuals may have feeding and swallowing difficulties, foot deformities, abnormal curvature of the spine (scoliosis), and joint deformities (contractures). Most people with nemaline myopathy are able to walk, although some affected children may begin walking later than usual. As the condition progresses, some people may require wheelchair assistance. In severe cases, the muscles used for breathing are affected and life-threatening breathing difficulties can occur. [from MedlinePlus Genetics]

MedGen UID:
324513
Concept ID:
C1836447
Disease or Syndrome
7.

Myopathy, myosin storage, autosomal recessive

Autosomal recessive myosin storage congenital myopathy-7B (CMYP7B) is a skeletal muscle disorder characterized by the onset of scapuloperoneal muscle weakness in early childhood or young adulthood. Affected individuals have difficulty walking, steppage gait, and scapular winging due to shoulder girdle involvement. The severity and progression of the disorder is highly variable, even within families. Most patients develop respiratory insufficiency, nocturnal hypoventilation, and restrictive lung disease; some develop hypertrophic cardiomyopathy. Additional features include myopathic facies, high-arched palate, scoliosis, and muscle wasting with thin body habitus. Serum creatine kinase may be normal or elevated. Skeletal muscle biopsy shows variable findings, including myosin storage disease, type 1 fiber predominance, centralized nuclei, and multiminicore disease (Onengut et al., 2004; Tajsharghi et al., 2007; Beecroft et al., 2019). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]

MedGen UID:
340603
Concept ID:
C1850709
Disease or Syndrome
8.

Congenital muscular dystrophy with intellectual disability and severe epilepsy

A rare fatal inborn error of metabolism disorder with characteristics of respiratory distress and severe hypotonia at birth, severe global developmental delay, early-onset intractable seizures, myopathic facies with craniofacial dysmorphism (trigonocephaly/progressive microcephaly, low anterior hairline, arched eyebrows, hypotelorism, strabismus, small nose, prominent philtrum, thin upper lip, high-arched palate, micrognathia, malocclusion), severe, congenital flexion joint contractures and elevated serum creatine kinase levels. Scoliosis, optic atrophy, mild hepatomegaly, and hypoplastic genitalia may also be associated. There is evidence the disease is caused by homozygous or compound heterozygous mutation in the DPM2 gene on chromosome 9q34. [from SNOMEDCT_US]

MedGen UID:
1682844
Concept ID:
C5190603
Disease or Syndrome
9.

Brown-Vialetto-van Laere syndrome 1

Brown-Vialetto-Van Laere syndrome is a rare autosomal recessive neurologic disorder characterized by sensorineural hearing loss and a variety of cranial nerve palsies, usually involving the motor components of the seventh and ninth to twelfth (more rarely the third, fifth, and sixth) cranial nerves. Spinal motor nerves and, less commonly, upper motor neurons are sometimes affected, giving a picture resembling amyotrophic lateral sclerosis (ALS; 105400). The onset of the disease is usually in the second decade, but earlier and later onset have been reported. Hearing loss tends to precede the onset of neurologic signs, mostly progressive muscle weakness causing respiratory compromise. However, patients with very early onset may present with bulbar palsy and may not develop hearing loss until later. The symptoms, severity, and disease duration are variable (summary by Green et al., 2010). Genetic Heterogeneity of Brown-Vialetto-Van Laere Syndrome See also BVVLS2 (614707), caused by mutation in the SLC52A2 gene (607882) on chromosome 8q. [from OMIM]

MedGen UID:
163239
Concept ID:
C0796274
Disease or Syndrome
10.

Bailey-Bloch congenital myopathy

STAC3 disorder is characterized by congenital myopathy, musculoskeletal involvement of the trunk and extremities, feeding difficulties, and delayed motor milestones. Most affected individuals have weakness with myopathic facies, scoliosis, kyphosis or kyphoscoliosis, and contractures. Other common findings are ptosis, abnormalities of the palate (including cleft palate), and short stature. Risk for malignant hyperthermia susceptibility and restrictive lung disease are increased. Intellect is typically normal. Originally described in individuals from the Lumbee Native American tribe (an admixture of Cheraw Indian, English, and African American ancestry) in the state of North Carolina and reported as Native American myopathy, STAC3 disorder has now been identified in numerous other populations worldwide. [from GeneReviews]

MedGen UID:
340586
Concept ID:
C1850625
Disease or Syndrome
11.

Infantile-onset X-linked spinal muscular atrophy

X-linked infantile spinal muscular atrophy (XL-SMA) is characterized by congenital hypotonia, areflexia, and evidence of degeneration and loss of anterior horn cells (i.e., lower motor neurons) in the spinal cord and brain stem. Often congenital contractures and/or fractures are present. Intellect is normal. Life span is significantly shortened because of progressive ventilatory insufficiency resulting from chest muscle involvement. [from GeneReviews]

MedGen UID:
337123
Concept ID:
C1844934
Disease or Syndrome
12.

Recurrent metabolic encephalomyopathic crises-rhabdomyolysis-cardiac arrhythmia-intellectual disability syndrome

Individuals with TANGO2-related metabolic encephalopathy and arrhythmias can present in acute metabolic crisis (hypoglycemia, elevated lactate, mild hyperammonemia) or with developmental delay, regression, and/or seizures. The acute presentation varies from profound muscle weakness, ataxia, and/or disorientation to a comatose state. Individuals can present with intermittent acute episodes of rhabdomyolysis. The first episode of myoglobinuria has been known to occur as early as age five months. Acute renal tubular damage due to myoglobinuria can result in acute kidney injury and renal failure. During acute illness, transient electrocardiogram changes can be seen; the most common is QT prolongation. Life-threatening recurrent ventricular tachycardia or torsade de pointes occurs primarily during times of acute illness. Individuals who do not present in metabolic crises may present with gait incoordination, progressively unsteady gait, difficulty with speech, or clumsiness. Intellectual disability of variable severity is observed in almost all individuals. Seizures are observed outside the periods of crises in more than 75% of individuals. Hypothyroidism has been reported in more than one third of individuals. [from GeneReviews]

MedGen UID:
1798947
Concept ID:
C5567524
Disease or Syndrome
13.

PURA-related severe neonatal hypotonia-seizures-encephalopathy syndrome

PURA-related neurodevelopmental disorders include PURA syndrome, caused by a heterozygous pathogenic sequence variant in PURA, and 5q31.3 deletion syndrome, caused by a genomic 5q31.3 deletion encompassing all or part of PURA. PURA-related neurodevelopmental disorders are characterized by moderate-to-severe neurodevelopmental delay with absence of speech in most and lack of independent ambulation in many. Early-onset problems can include hypotonia, hypothermia, hypersomnolence, feeding difficulties, excessive hiccups, recurrent central and obstructive apneas, epileptic seizures, abnormal nonepileptic movements (dystonia, dyskinesia, and dysconjugate eye movements), and abnormal vision. Congenital heart defects, urogenital malformations, skeletal abnormalities, and endocrine disorders occur, but are less common. [from GeneReviews]

MedGen UID:
863794
Concept ID:
C4015357
Disease or Syndrome
14.

Muscular dystrophy-dystroglycanopathy (congenital with intellectual disability), type B14

MDDGB14 is an autosomal recessive congenital muscular dystrophy characterized by severe muscle weakness apparent in infancy and impaired intellectual development. Some patients may have additional features, such as microcephaly, cardiac dysfunction, seizures, or cerebellar hypoplasia. It is part of a group of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as 'dystroglycanopathies' (summary by Carss et al., 2013). For a discussion of genetic heterogeneity of congenital muscular dystrophy-dystroglycanopathy type B, see MDDGB1 (613155). [from OMIM]

MedGen UID:
815551
Concept ID:
C3809221
Disease or Syndrome
15.

Myopathy, proximal, and ophthalmoplegia

Congenital myopathy-6 with ophthalmoplegia (CMYP6) is a relatively mild muscle disorder characterized by childhood onset of symptoms. The disorder is either slowly progressive or nonprogressive, and affected individuals retain ambulation, although there is variable severity. CMYP6 can show both autosomal dominant and autosomal recessive inheritance; the phenotype is similar in both forms (summary by Lossos et al., 2005 and Tajsharghi et al., 2014). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]

MedGen UID:
381340
Concept ID:
C1854106
Disease or Syndrome
16.

Lethal arthrogryposis-anterior horn cell disease syndrome

Congenital arthrogryposis with anterior horn cell disease (CAAHD) is an autosomal recessive neuromuscular disorder with highly variable severity. Affected individuals are usually noted to have contractures in utero on prenatal ultrasound studies, and present at birth with generalized contractures manifest as arthrogryposis multiplex congenita (AMC). Patients have severe hypotonia with respiratory insufficiency, often resulting in death in infancy or early childhood. Some patients may survive into later childhood with supportive care, but may be unable to walk or sit independently due to a combination of muscle weakness and contractures. Cognition may be normal. The disorder also includes multiple congenital anomalies associated with AMC and hypotonia, including high-arched palate, myopathic facies, and bulbar weakness. Neuropathologic studies demonstrate severe loss of anterior horn cells in the spinal cord, as well as diffuse motor neuron axonopathy (summary by Smith et al., 2017 and Tan et al., 2017). Distinction from Lethal Congenital Contracture Syndrome 1 Biallelic mutation in the GLE1 gene can also cause LCCS1, which is lethal in utero. However, distinguishing between LCCS1 and CAAHD is controversial. Smith et al. (2017) suggested that differentiating between the 2 disorders has limited utility, and that they may represent a genotype/phenotype correlation rather than 2 different disease entities. In contrast, Said et al. (2017) concluded that LCCS1 represents a distinct clinical entity in which all affected individuals die prenatally and exhibit no fetal movements. Vuopala et al. (1995) differentiated CAAHD from LCCS1, noting that both are prevalent in Finland. LCCS1 is always fatal during the fetal period, presenting with severe hydrops and intrauterine growth retardation. In LCCS1, the spinal cord is macroscopically thinned because of an early reduction of the anterior horn and a paucity of anterior horn cells. The skeletal muscles are extremely hypoplastic, even difficult to locate. Infants with CAAHD survive longer than those with LCCS1, and when present, hydrops and intrauterine growth retardation are mild. The macroscopic findings of the central nervous system and skeletal muscles are closer to normal, although microscopic analysis also shows degeneration of anterior horn cells. In addition, birthplaces of ancestors of affected individuals do not show clustering in the northeast part of Finland, as is the case with LCCS1. [from OMIM]

MedGen UID:
1677784
Concept ID:
C5193016
Disease or Syndrome
17.

Atypical glycine encephalopathy

GLYT1 encephalopathy is characterized in neonates by severe hypotonia, respiratory failure requiring mechanical ventilation, and absent neonatal reflexes; encephalopathy, including impaired consciousness and unresponsiveness, may be present. Arthrogryposis or joint laxity can be observed. Generalized hypotonia develops later into axial hypotonia with limb hypertonicity and a startle-like response to vocal and visual stimuli which should not be confused with seizures. To date, three of the six affected children reported from three families died between ages two days and seven months; the oldest reported living child is severely globally impaired at age three years. Because of the limited number of affected individuals reported to date, the phenotype has not yet been completely described. [from GeneReviews]

MedGen UID:
934910
Concept ID:
C4310943
Disease or Syndrome
18.

King Denborough syndrome

King-Denborough syndrome (KDS) is an autosomal dominant disorder characterized by the triad of congenital myopathy, dysmorphic features, and susceptibility to malignant hyperthermia (summary by Dowling et al., 2011). [from OMIM]

MedGen UID:
327082
Concept ID:
C1840365
Disease or Syndrome
19.

Hypotonia, ataxia, and delayed development syndrome

EBF3 neurodevelopmental disorder (EBF3-NDD) is associated with developmental delay (DD) / intellectual disability (ID), speech delay, gait or truncal ataxia, hypotonia, behavioral problems, and facial dysmorphism. Variability between individuals with EBF3-NDD is significant. Although all affected children have DD noted in early infancy, intellect generally ranges from mild to severe ID, with two individuals functioning in the low normal range. Less common issues can include genitourinary abnormalities and gastrointestinal and/or musculoskeletal involvement. To date, 42 symptomatic individuals from 39 families have been reported. [from GeneReviews]

MedGen UID:
934585
Concept ID:
C4310618
Disease or Syndrome
20.

Temple-Baraitser syndrome

Temple-Baraitser syndrome is a rare developmental disorder characterized by severe mental retardation and anomalies of the first ray of the upper and lower limbs with absence/hypoplasia of the nails. Most patients also have seizures; various dysmorphic facial features have been reported (summary by Jacquinet et al., 2010). [from OMIM]

MedGen UID:
395636
Concept ID:
C2678486
Congenital Abnormality; Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity