Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Cobalamin C disease
Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]
Deficiency of hydroxymethylglutaryl-CoA lyase
3-Hydroxy-3-methylglutaryl-CoA lyase deficiency (HMGCLD) is a rare autosomal recessive disorder with the cardinal manifestations of metabolic acidosis without ketonuria, hypoglycemia, and a characteristic pattern of elevated urinary organic acid metabolites, including 3-hydroxy-3-methylglutaric, 3-methylglutaric, and 3-hydroxyisovaleric acids. Urinary levels of 3-methylcrotonylglycine may be increased. Dicarboxylic aciduria, hepatomegaly, and hyperammonemia may also be observed. Presenting clinical signs include irritability, lethargy, coma, and vomiting (summary by Gibson et al., 1988). [from OMIM]
Carnitine acylcarnitine translocase deficiency
Carnitine-acylcarnitine translocase (CACT) is a critical component of the carnitine shuttle, which facilitates the transfer of long-chain fatty acylcarnitines across the inner mitochondrial membrane. CACT deficiency causes a defect in mitochondrial long-chain fatty acid ß-oxidation, with variable clinical severity. Severe neonatal-onset disease is most common, with symptoms evident within two days after birth; attenuated cases may present in the first months of life. Hyperammonemia and cardiac arrhythmia are prominent in early-onset disease, with high rates of cardiac arrest. Other clinical features are typical for disorders of long-chain fatty acid oxidation: poor feeding, lethargy, hypoketotic hypoglycemia, hypotonia, transaminitis, liver dysfunction with hepatomegaly, and rhabdomyolysis. Univentricular or biventricular hypertrophic cardiomyopathy, ranging from mild to severe, may respond to appropriate dietary and medical therapies. Hyperammonemia is difficult to treat and is an important determinant of long-term neurocognitive outcome. Affected individuals with early-onset disease typically experience brain injury at presentation, and have recurrent hyperammonemia leading to developmental delay / intellectual disability. Affected individuals with later-onset disease have milder symptoms and are less likely to experience recurrent hyperammonemia, allowing a better developmental outcome. Prompt treatment of the presenting episode to prevent hypoglycemic, hypoxic, or hyperammonemic brain injury may allow normal growth and development. [from GeneReviews]
Brugada syndrome 1
Brugada syndrome is characterized by cardiac conduction abnormalities (ST segment abnormalities in leads V1-V3 on EKG and a high risk for ventricular arrhythmias) that can result in sudden death. Brugada syndrome presents primarily during adulthood, although age at diagnosis may range from infancy to late adulthood. The mean age of sudden death is approximately 40 years. Clinical presentations may also include sudden infant death syndrome (SIDS; death of a child during the first year of life without an identifiable cause) and sudden unexpected nocturnal death syndrome (SUNDS), a typical presentation in individuals from Southeast Asia. Other conduction defects can include first-degree AV block, intraventricular conduction delay, right bundle branch block, and sick sinus syndrome. [from GeneReviews]
Hypertrophic cardiomyopathy 4
The symptoms of familial hypertrophic cardiomyopathy are variable, even within the same family. Many affected individuals have no symptoms. Other people with familial hypertrophic cardiomyopathy may experience chest pain; shortness of breath, especially with physical exertion; a sensation of fluttering or pounding in the chest (palpitations); lightheadedness; dizziness; and fainting.In familial hypertrophic cardiomyopathy, cardiac thickening usually occurs in the interventricular septum, which is the muscular wall that separates the lower left chamber of the heart (the left ventricle) from the lower right chamber (the right ventricle). In some people, thickening of the interventricular septum impedes the flow of oxygen-rich blood from the heart, which may lead to an abnormal heart sound during a heartbeat (heart murmur) and other signs and symptoms of the condition. Other affected individuals do not have physical obstruction of blood flow, but the pumping of blood is less efficient, which can also lead to symptoms of the condition. Familial hypertrophic cardiomyopathy often begins in adolescence or young adulthood, although it can develop at any time throughout life.While most people with familial hypertrophic cardiomyopathy are symptom-free or have only mild symptoms, this condition can have serious consequences. It can cause abnormal heart rhythms (arrhythmias) that may be life threatening. People with familial hypertrophic cardiomyopathy have an increased risk of sudden death, even if they have no other symptoms of the condition. A small number of affected individuals develop potentially fatal heart failure, which may require heart transplantation.Nonfamilial hypertrophic cardiomyopathy tends to be milder. This form typically begins later in life than familial hypertrophic cardiomyopathy, and affected individuals have a lower risk of serious cardiac events and sudden death than people with the familial form.Hypertrophic cardiomyopathy is a heart condition characterized by thickening (hypertrophy) of the heart (cardiac) muscle. When multiple members of a family have the condition, it is known as familial hypertrophic cardiomyopathy. Hypertrophic cardiomyopathy also occurs in people with no family history; these cases are considered nonfamilial hypertrophic cardiomyopathy. [from MedlinePlus Genetics]
Long QT syndrome 2
Long QT syndrome (LQTS) is a cardiac electrophysiologic disorder, characterized by QT prolongation and T-wave abnormalities on the EKG that are associated with tachyarrhythmias, typically the ventricular tachycardia torsade de pointes (TdP). TdP is usually self-terminating, thus causing a syncopal event, the most common symptom in individuals with LQTS. Such cardiac events typically occur during exercise and emotional stress, less frequently during sleep, and usually without warning. In some instances, TdP degenerates to ventricular fibrillation and causes aborted cardiac arrest (if the individual is defibrillated) or sudden death. Approximately 50% of untreated individuals with a pathogenic variant in one of the genes associated with LQTS have symptoms, usually one to a few syncopal events. While cardiac events may occur from infancy through middle age, they are most common from the preteen years through the 20s. Some types of LQTS are associated with a phenotype extending beyond cardiac arrhythmia. In addition to the prolonged QT interval, associations include muscle weakness and facial dysmorphism in Andersen-Tawil syndrome (LQTS type 7); hand/foot, facial, and neurodevelopmental features in Timothy syndrome (LQTS type 8); and profound sensorineural hearing loss in Jervell and Lange-Nielson syndrome. [from GeneReviews]
Hypertrophic cardiomyopathy 11
An autosomal dominant subtype of familial hypertrophic cardiomyopathy caused by mutation(s) in the ACTC1 gene, encoding actin, alpha cardiac muscle 1. [from NCI]
Long QT syndrome 9
Dilated cardiomyopathy 1AA
Any familial isolated dilated cardiomyopathy in which the cause of the disease is a mutation in the ACTN2 gene. [from MONDO]
Arrhythmogenic right ventricular dysplasia 9
Arrhythmogenic right ventricular cardiomyopathy (ARVC) – previously referred to as arrhythmogenic right ventricular dysplasia (ARVD) – is characterized by progressive fibrofatty replacement of the myocardium that predisposes to ventricular tachycardia and sudden death in young individuals and athletes. It primarily affects the right ventricle, and it may also involve the left ventricle. The presentation of disease is highly variable even within families, and some affected individuals may not meet established clinical criteria. The mean age at diagnosis is 31 years (±13; range: 4-64 years). [from GeneReviews]
Long QT syndrome 6
Long QT syndrome 13
Hypertrophic cardiomyopathy 8
Any hypertrophic cardiomyopathy in which the cause of the disease is a mutation in the MYL3 gene. [from MONDO]
Sengers syndrome
Sengers syndrome is an autosomal recessive mitochondrial disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Mental development is normal, but affected individuals may die early from cardiomyopathy (summary by Mayr et al., 2012). Skeletal muscle biopsies of 2 affected individuals showed severe mtDNA depletion (Calvo et al., 2012). [from OMIM]
Short QT syndrome type 1
Short QT syndrome (SQT) is a cardiac channelopathy associated with a predisposition to atrial fibrillation and sudden cardiac death. Patients have a structurally normal heart, but electrocardiography (ECG) exhibits abbreviated QTc (Bazett's corrected QT) intervals of less than 360 ms (summary by Moreno et al., 2015). Genetic Heterogeneity of Short QT Syndrome Short QT syndrome-2 (SQT2; 609621) is caused by mutation in the KCNQ1 gene (607542). SQT3 (609622) is caused by mutation in the KCNJ2 gene (600681). SQT7 (620231) is caused by mutation in the SLC4A3 gene (106195). [from OMIM]
Brugada syndrome 6
Sick sinus syndrome 2, autosomal dominant
Sick sinus syndrome (also known as sinus node dysfunction) is a group of related heart conditions that can affect how the heart beats. "Sick sinus" refers to the sino-atrial (SA) node, which is an area of specialized cells in the heart that functions as a natural pacemaker. The SA node generates electrical impulses that start each heartbeat. These signals travel from the SA node to the rest of the heart, signaling the heart (cardiac) muscle to contract and pump blood. In people with sick sinus syndrome, the SA node does not function normally. In some cases, it does not produce the right signals to trigger a regular heartbeat. In others, abnormalities disrupt the electrical impulses and prevent them from reaching the rest of the heart.Sick sinus syndrome tends to cause the heartbeat to be too slow (bradycardia), although occasionally the heartbeat is too fast (tachycardia). In some cases, the heartbeat rapidly switches from being too fast to being too slow, a condition known as tachycardia-bradycardia syndrome. Symptoms related to abnormal heartbeats can include dizziness, light-headedness, fainting (syncope), a sensation of fluttering or pounding in the chest (palpitations), and confusion or memory problems. During exercise, many affected individuals experience chest pain, difficulty breathing, or excessive tiredness (fatigue). Once symptoms of sick sinus syndrome appear, they usually worsen with time. However, some people with the condition never experience any related health problems.Sick sinus syndrome occurs most commonly in older adults, although it can be diagnosed in people of any age. The condition increases the risk of several life-threatening problems involving the heart and blood vessels. These include a heart rhythm abnormality called atrial fibrillation, heart failure, cardiac arrest, and stroke. [from MedlinePlus Genetics]
Multiple congenital anomalies-hypotonia-seizures syndrome 2
Multiple congenital anomalies-hypotonia-seizures syndrome-2 (MCAHS2) is an X-linked recessive neurodevelopmental disorder characterized by dysmorphic features, neonatal hypotonia, early-onset myoclonic seizures, and variable congenital anomalies involving the central nervous, cardiac, and urinary systems. Some affected individuals die in infancy (summary by Johnston et al., 2012). The phenotype shows clinical variability with regard to severity and extraneurologic features. However, most patients present in infancy with early-onset epileptic encephalopathy associated with developmental arrest and subsequent severe neurologic disability; these features are consistent with a form of developmental and epileptic encephalopathy (DEE) (summary by Belet et al., 2014, Kato et al., 2014). The disorder is caused by a defect in glycosylphosphatidylinositol (GPI) biosynthesis. For a discussion of genetic heterogeneity of MCAHS, see MCAHS1 (614080). For a discussion of nomenclature and genetic heterogeneity of DEE, see 308350. For a discussion of genetic heterogeneity of GPI biosynthesis defects, see GPIBD1 (610293). [from OMIM]
Catecholaminergic polymorphic ventricular tachycardia 5
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is characterized by episodic syncope occurring during exercise or acute emotion. The underlying cause of these episodes is the onset of fast ventricular tachycardia (bidirectional or polymorphic). Spontaneous recovery may occur when these arrhythmias self-terminate. In other instances, ventricular tachycardia may degenerate into ventricular fibrillation and cause sudden death if cardiopulmonary resuscitation is not readily available. The mean onset of symptoms (usually a syncopal episode) is between age seven and 12 years; onset as late as the fourth decade of life has been reported. If untreated, CPVT is highly lethal, as approximately 30% of affected individuals experience at least one cardiac arrest and up to 80% have one or more syncopal spells. Sudden death may be the first manifestation of the disease. [from GeneReviews]
Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency 1
Mitochondrial complex IV deficiency nuclear type 2 (MC4DN2) is an autosomal recessive multisystem metabolic disorder characterized by the onset of symptoms at birth or in the first weeks or months of life. Affected individuals have severe hypotonia, often associated with feeding difficulties and respiratory insufficiency necessitating tube feeding and mechanical ventilation. The vast majority of patients develop hypertrophic cardiomyopathy in the first days or weeks of life, which usually leads to death in infancy or early childhood. Patients also show neurologic abnormalities, including developmental delay, nystagmus, fasciculations, dystonia, EEG changes, and brain imaging abnormalities compatible with a diagnosis of Leigh syndrome (see 256000). There may also be evidence of systemic involvement with hepatomegaly and myopathy, although neurogenic muscle atrophy is more common and may resemble spinal muscular atrophy type I (SMA1; 253300). Serum lactate is increased, and laboratory studies show decreased mitochondrial complex IV protein and activity levels in various tissues, including heart and skeletal muscle. Most patients die in infancy of cardiorespiratory failure (summary by Papadopoulou et al., 1999). For a discussion of genetic heterogeneity of mitochondrial complex IV (cytochrome c oxidase) deficiency, see 220110. [from OMIM]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on