U.S. flag

An official website of the United States government

We are planning the future of MedGen. Fill out this survey or email us at medgen_help@ncbi.nlm.nih.gov to tell us how it can work better for you.

Search results

Items: 1 to 20 of 47

1.

Mitochondrial DNA depletion syndrome 3 (hepatocerebral type)

The two forms of deoxyguanosine kinase (DGUOK) deficiency are a neonatal multisystem disorder and an isolated hepatic disorder that presents later in infancy or childhood. The majority of affected individuals have the multisystem illness with hepatic disease (jaundice, cholestasis, hepatomegaly, and elevated transaminases) and neurologic manifestations (hypotonia, nystagmus, and psychomotor retardation) evident within weeks of birth. Those with isolated liver disease may also have renal involvement and some later develop mild hypotonia. Progressive hepatic disease is the most common cause of death in both forms. [from GeneReviews]

MedGen UID:
1682503
Concept ID:
C5191055
Disease or Syndrome
2.

Mitochondrial DNA depletion syndrome 9

SUCLG1-related mitochondrial DNA (mtDNA) depletion syndrome, encephalomyopathic form with methylmalonic aciduria is characterized in the majority of affected newborns by hypotonia, muscle atrophy, feeding difficulties, and lactic acidosis. Affected infants commonly manifest developmental delay / cognitive impairment, growth retardation / failure to thrive, hepatopathy, sensorineural hearing impairment, dystonia, and hypertonia. Notable findings in some affected individuals include hypertrophic cardiomyopathy, epilepsy, myoclonus, microcephaly, sleep disturbance, rhabdomyolysis, contractures, hypothermia, and/or hypoglycemia. Life span is shortened, with median survival of 20 months. [from GeneReviews]

MedGen UID:
462826
Concept ID:
C3151476
Disease or Syndrome
3.

Mitochondrial DNA depletion syndrome 6 (hepatocerebral type)

MPV17-related mitochondrial DNA (mtDNA) maintenance defect presents in the vast majority of affected individuals as an early-onset encephalohepatopathic (hepatocerebral) disease that is typically associated with mtDNA depletion, particularly in the liver. A later-onset neuromyopathic disease characterized by myopathy and neuropathy, and associated with multiple mtDNA deletions in muscle, has also rarely been described. MPV17-related mtDNA maintenance defect, encephalohepatopathic form is characterized by: Hepatic manifestations (liver dysfunction that typically progresses to liver failure, cholestasis, hepatomegaly, and steatosis); Neurologic involvement (developmental delay, hypotonia, microcephaly, and motor and sensory peripheral neuropathy); Gastrointestinal manifestations (gastrointestinal dysmotility, feeding difficulties, and failure to thrive); and Metabolic derangements (lactic acidosis and hypoglycemia). Less frequent manifestations include renal tubulopathy, nephrocalcinosis, and hypoparathyroidism. Progressive liver disease often leads to death in infancy or early childhood. Hepatocellular carcinoma has been reported. [from GeneReviews]

MedGen UID:
338045
Concept ID:
C1850406
Disease or Syndrome
4.

Mitochondrial DNA depletion syndrome, myopathic form

TK2-related mitochondrial DNA (mtDNA) maintenance defect is a phenotypic continuum that ranges from severe to mild. To date, approximately 107 individuals with a molecularly confirmed diagnosis have been reported. Three main subtypes of presentation have been described: Infantile-onset myopathy with neurologic involvement and rapid progression to early death. Affected individuals experience progressive muscle weakness leading to respiratory failure. Some individuals develop dysarthria, dysphagia, and/or hearing loss. Cognitive function is typically spared. Juvenile/childhood onset with generalized proximal weakness and survival to at least 13 years. Late-/adult-onset myopathy with facial and limb weakness and mtDNA deletions. Some affected individuals develop respiratory insufficiency, chronic progressive external ophthalmoplegia, dysphagia, and dysarthria. [from GeneReviews]

MedGen UID:
461100
Concept ID:
C3149750
Disease or Syndrome
5.

Mitochondrial DNA depletion syndrome 13

FBXL4-related encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome is a multi-system disorder characterized primarily by congenital or early-onset lactic acidosis and growth failure, feeding difficulty, hypotonia, and developmental delay. Other neurologic manifestations can include seizures, movement disorders, ataxia, autonomic dysfunction, and stroke-like episodes. All affected individuals alive at the time they were reported (median age: 3.5 years) demonstrated significant developmental delay. Other findings can involve the heart (hypertrophic cardiomyopathy, congenital heart malformations, arrhythmias), liver (mildly elevated transaminases), eyes (cataract, strabismus, nystagmus, optic atrophy), hearing (sensorineural hearing loss), and bone marrow (neutropenia, lymphopenia). Survival varies; the median age of reported deaths was two years (range 2 days – 75 months), although surviving individuals as old as 36 years have been reported. To date FBXL4-related mtDNA depletion syndrome has been reported in 50 individuals. [from GeneReviews]

MedGen UID:
815922
Concept ID:
C3809592
Disease or Syndrome
6.

Sengers syndrome

Sengers syndrome is an autosomal recessive mitochondrial disorder characterized by congenital cataracts, hypertrophic cardiomyopathy, skeletal myopathy, exercise intolerance, and lactic acidosis. Mental development is normal, but affected individuals may die early from cardiomyopathy (summary by Mayr et al., 2012). Skeletal muscle biopsies of 2 affected individuals showed severe mtDNA depletion (Calvo et al., 2012). [from OMIM]

MedGen UID:
395228
Concept ID:
C1859317
Disease or Syndrome
7.

Hepatoencephalopathy due to combined oxidative phosphorylation defect type 1

Combined oxidative phosphorylation deficiency is an autosomal recessive multisystem disorder with variable manifestations resulting from a defect in the mitochondrial oxidative phosphorylation (OXPHOS) system. Onset occurs at or soon after birth, and features can include growth retardation, microcephaly, hypertonicity, axial hypotonia, encephalopathy, cardiomyopathy, and liver dysfunction. Death usually occurs in the first weeks or years of life (summary by Smits et al., 2011). Genetic Heterogeneity of Combined Oxidative Phosphorylation Deficiency See also COXPD2 (610498), caused by mutation in the MRPS16 gene (609204) on 10q22; COXPD3 (610505), caused by mutation in the TSFM gene (604723) on 12q14; COXPD4 (610678), caused by mutation in the TUFM gene (602389) on 16p11; COXPD5 (611719), caused by mutation in the MRPS22 gene (605810) on 3q23; COXPD6 (300816), caused by mutation in the AIFM1 gene (300169) on Xq26; COXPD7 (613559), caused by mutation in the MTRFR gene (613541) on 12q24; COXPD8 (614096), caused by mutation in the AARS2 gene (612035) on 6p21; COXPD9 (614582), caused by mutation in the MRPL3 gene (607118) on 3q22; COXPD10 (614702), caused by mutation in the MTO1 gene (614667) on 6q13; COXPD11 (614922), caused by mutation in the RMND1 gene (614917) on 6q25; COXPD12 (614924), caused by mutation in the EARS2 gene (612799) on 16p13; COXPD13 (614932), caused by mutation in the PNPT1 gene (610316) on 2p16; COXPD14 (614946), caused by mutation in the FARS2 gene (611592) on 6p25; COXPD15 (614947), caused by mutation in the MTFMT gene (611766) on 15q; COXPD16 (615395), caused by mutation in the MRPL44 gene (611849) on 2q36; COXPD17 (615440), caused by mutation in the ELAC2 gene (605367) on 17p11; COXPD18 (615578), caused by mutation in the SFXN4 gene (615564) on 10q26; COXPD19 (615595), caused by mutation in the LYRM4 gene (613311) on 6p25; COXPD20 (615917), caused by mutation in the VARS2 gene (612802) on 6p21; COXPD21 (615918), caused by mutation in the TARS2 gene (612805) on 1q21; COXPD22 (616045), caused by mutation in the ATP5A1 gene (164360) on 18q12; COXPD23 (616198), caused by mutation in the GTPBP3 (608536) gene on 19p13; COXPD24 (616239), caused by mutation in the NARS2 gene (612803) on 11q14; COXPD25 (616430), caused by mutation in the MARS2 gene (609728) on 2q33; COXPD26 (616539), caused by mutation in the TRMT5 gene (611023) on 14q23; COXPD27 (616672), caused by mutation in the CARS2 gene (612800) on 13q34; COXPD28 (616794), caused by mutation in the SLC25A26 gene (611037) on 3p14; COXPD29 (616811), caused by mutation in the TXN2 gene (609063) on 22q12; COXPD30 (616974), caused by mutation in the TRMT10C gene (615423) on 3q12; and COXPD31 (617228), caused by mutation in the MIPEP gene (602241) on 13q12; COXPD32 (617664), caused by mutation in the MRPS34 gene (611994) on 16q13; COXPD33 (617713), caused by mutation in the C1QBP gene (601269) on 17p13; and COXPD34 (617872), caused by mutation in the MRPS7 gene (611974) on 17q25; COXPD35 (617873), caused by mutation in the TRIT1 gene (617840) on 1p34; COXPD36 (617950), caused by mutation in the MRPS2 gene (611971) on 9q34; COXPD37 (618329), caused by mutation in the MICOS13 gene (616658) on 19p13; COXPD38 (618378), caused by mutation in the MRPS14 gene (611978) on 1q23; COXPD39 (618397), caused by mutation in the GFM2 gene (606544) on 5q13; COXPD40 (618835), caused by mutation in the QRSL1 gene (617209) on 6q21; COXPD41 (618838), caused by mutation in the GATB gene (603645) on 4q31; COXPD42 (618839), caused by mutation in the GATC gene (617210) on 12q24; COXPD43 (618851), caused by mutation in the TIMM22 gene (607251) on 17p13; COXPD44 (618855), caused by mutation in the FASTKD2 gene (612322) on 2q33; COXPD45 (618951), caused by mutation in the MRPL12 gene (602375) on 17q25; COXPD46 (618952), caused by mutation in the MRPS23 gene (611985) on 17q22; COXPD47 (618958), caused by mutation in the MRPS28 gene (611990) on 8q21; COXPD48 (619012), caused by mutation in the NSUN3 gene (617491) on 3q11; COXPD49 (619024), caused by mutation in the MIEF2 gene (615498) on 17p11; COXPD50 (619025), caused by mutation in the MRPS25 gene (611987) on 3p25; COXPD51 (619057), caused by mutation in the PTCD3 gene (614918) on 2p11; COXPD52 (619386), caused by mutation in the NFS1 gene (603485) on 20q11; COXPD53 (619423), caused by mutation in the C2ORF69 gene (619219) on 2q33; and COXPD54 (619737), caused by mutation in the PRORP gene (609947) on 14q13.; COXPD55 (619743), caused by mutation in the POLRMT gene (601778) on 19p13; COXPD56 (620139), caused by mutation in the TAMM41 gene (614948) on 3p25; COXPD57 (620167), caused by mutation in the CRLS1 gene (608188) on 20p12; COXPD58 (620451), caused by mutation in the TEFM gene (616422) on 17q11; and COXPD59 (620646), caused by mutation in the MRPL39 gene (611845) on 21q21. [from OMIM]

MedGen UID:
322999
Concept ID:
C1836797
Disease or Syndrome
8.

Mitochondrial complex I deficiency

Isolated complex I deficiency is a rare inborn error of metabolism due to mutations in nuclear or mitochondrial genes encoding subunits or assembly factors of the human mitochondrial complex I (NADH: ubiquinone oxidoreductase) and is characterized by a wide range of manifestations including marked and often fatal lactic acidosis, cardiomyopathy, leukoencephalopathy, pure myopathy and hepatopathy with tubulopathy. Among the numerous clinical phenotypes observed are Leigh syndrome, Leber hereditary optic neuropathy and MELAS syndrome (see these terms). [from ORDO]

MedGen UID:
374101
Concept ID:
C1838979
Disease or Syndrome
9.

Mitochondrial complex III deficiency nuclear type 1

Autosomal recessive mitochondrial complex III deficiency is a severe multisystem disorder with onset at birth of lactic acidosis, hypotonia, hypoglycemia, failure to thrive, encephalopathy, and delayed psychomotor development. Visceral involvement, including hepatopathy and renal tubulopathy, may also occur. Many patients die in early childhood, but some may show longer survival (de Lonlay et al., 2001; De Meirleir et al., 2003). Genetic Heterogeneity of Mitochondrial Complex III Deficiency Mitochondrial complex III deficiency can be caused by mutation in several different nuclear-encoded genes. See MC3DN2 (615157), caused by mutation in the TTC19 gene (613814) on chromosome 17p12; MC3DN3 (615158), caused by mutation in the UQCRB gene (191330) on chromosome 8q; MC3DN4 (615159), caused by mutation in the UQCRQ gene (612080) on chromosome 5q31; MC3DN5 (615160), caused by mutation in the UQCRC2 gene (191329) on chromosome 16p12; MC3DN6 (615453), caused by mutation in the CYC1 gene (123980) on chromosome 8q24; MC3DN7 (615824), caused by mutation in the UQCC2 gene (614461) on chromosome 6p21; MC3DN8 (615838), caused by mutation in the LYRM7 gene (615831) on chromosome 5q23; MC3DN9 (616111), caused by mutation in the UQCC3 gene (616097) on chromosome 11q12; and MC3DN10 (618775), caused by mutation in the UQCRFS1 gene (191327) on chromosome 19q12. See also MTYCB (516020) for a discussion of a milder phenotype associated with isolated mitochondrial complex III deficiency and mutations in a mitochondrial-encoded gene. [from OMIM]

MedGen UID:
762097
Concept ID:
C3541471
Disease or Syndrome
10.

Fatal mitochondrial disease due to combined oxidative phosphorylation defect type 3

Combined oxidative phosphorylation deficiency type 3 is an extremely rare clinically heterogenous disorder described in about 5 patients to date. Clinical signs included hypotonia, lactic acidosis, and hepatic insufficiency, with progressive encephalomyopathy or hypertrophic cardiomyopathy. [from ORDO]

MedGen UID:
355842
Concept ID:
C1864840
Disease or Syndrome
11.

Pontocerebellar hypoplasia type 6

Pontocerebellar hypoplasia (PCH) is a heterogeneous group of disorders characterized by an abnormally small cerebellum and brainstem and associated with severe developmental delay (Edvardson et al., 2007). For a phenotypic description and a discussion of genetic heterogeneity of PCH, see PCH1 (607596). [from OMIM]

MedGen UID:
370596
Concept ID:
C1969084
Congenital Abnormality; Disease or Syndrome
12.

Mitochondrial hypertrophic cardiomyopathy with lactic acidosis due to MTO1 deficiency

Combined oxidative phosphorylation deficiency-10 (COXPD10) is an autosomal recessive disorder resulting in variable defects of mitochondrial oxidative respiration. Affected individuals present in infancy with hypertrophic cardiomyopathy and lactic acidosis. The severity is variable, but can be fatal in the most severe cases (summary by Ghezzi et al., 2012). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060). [from OMIM]

MedGen UID:
1664257
Concept ID:
C4749921
Disease or Syndrome
13.

Myopathy, lactic acidosis, and sideroblastic anemia 2

Myopathy, lactic acidosis, and sideroblastic anemia-2 (MLASA2) is an autosomal recessive disorder of the mitochondrial respiratory chain. The disorder shows marked phenotypic variability: some patients have a severe multisystem disorder from infancy, including cardiomyopathy and respiratory insufficiency resulting in early death, whereas others present in the second or third decade of life with sideroblastic anemia and mild muscle weakness (summary by Riley et al., 2013). For a discussion of genetic heterogeneity of MLASA, see MLASA1 (600462). [from OMIM]

MedGen UID:
462152
Concept ID:
C3150802
Disease or Syndrome
14.

Mitochondrial DNA depletion syndrome 12A (cardiomyopathic type), autosomal dominant

MTDPS12A is characterized by severe hypotonia due to mitochondrial dysfunction apparent at birth. Affected infants have respiratory insufficiency requiring mechanical ventilation and have poor or no motor development. Many die in infancy, and those that survive have profound hypotonia with significant muscle weakness and inability to walk independently. Some patients develop hypertrophic cardiomyopathy. Muscle samples show mtDNA depletion and severe combined mitochondrial respiratory chain deficiencies (summary by Thompson et al., 2016). For a discussion of genetic heterogeneity of mtDNA depletion syndromes, see MTDPS1 (603041). [from OMIM]

MedGen UID:
934643
Concept ID:
C4310676
Disease or Syndrome
15.

Hereditary myopathy with lactic acidosis due to ISCU deficiency

Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive muscular disorder characterized by childhood onset of exercise intolerance with muscle tenderness, cramping, dyspnea, and palpitations. Biochemical features include lactic acidosis and, rarely, rhabdomyolysis. It is a chronic disorder with remission and exacerbation of the muscle phenotype (summary by Sanaker et al., 2010). [from OMIM]

MedGen UID:
342573
Concept ID:
C1850718
Disease or Syndrome
16.

Hypotonia with lactic acidemia and hyperammonemia

This syndrome is characterized by severe hypotonia, lactic acidemia and congenital hyperammonemia. It has been described in three newborns born to consanguineous parents. Ultrasound examination during the 36th week of pregnancy revealed generalized edema. Hypertrophic cardiomyopathy and tubulopathy developed within the first week of life and the infants died within the first month. The activities of enzymes in the mitochondrial respiratory chain were reduced in the muscles of the patients. Mutations were identified in the MRPS22 gene on chromosome 3q23, encoding a mitochondrial ribosomal protein [from SNOMEDCT_US]

MedGen UID:
435972
Concept ID:
C2673642
Disease or Syndrome
17.

Leukoencephalopathy-thalamus and brainstem anomalies-high lactate syndrome

Combined oxidative phosphorylation deficiency-12 (COXPD12) is an autosomal recessive mitochondrial neurologic disorder characterized by onset in infancy of hypotonia and delayed psychomotor development, or early developmental regression, associated with T2-weighted hyperintensities in the deep cerebral white matter, brainstem, and cerebellar white matter. Serum lactate is increased due to a defect in mitochondrial respiration. There are 2 main phenotypic groups: those with a milder disease course and some recovery of skills after age 2 years, and those with a severe disease course resulting in marked disability (summary by Steenweg et al., 2012). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060). [from OMIM]

MedGen UID:
1645614
Concept ID:
C4706421
Disease or Syndrome
18.

Multiple mitochondrial dysfunctions syndrome 2

Multiple mitochondrial dysfunctions syndrome-2 (MMDS2) with hyperglycinemia is a severe autosomal recessive disorder characterized by developmental regression in infancy. Affected children have an encephalopathic disease course with seizures, spasticity, loss of head control, and abnormal movement. Additional more variable features include optic atrophy, cardiomyopathy, and leukodystrophy. Laboratory studies show increased serum glycine and lactate. Most patients die in childhood. The disorder represents a form of 'variant' nonketotic hyperglycinemia and is distinct from classic nonketotic hyperglycinemia (NKH, or GCE; 605899), which is characterized by significantly increased CSF glycine. Several forms of 'variant' NKH, including MMDS2, appear to result from defects of mitochondrial lipoate biosynthesis (summary by Baker et al., 2014). For a general description and a discussion of genetic heterogeneity of multiple mitochondrial dysfunctions syndrome, see MMDS1 (605711). [from OMIM]

MedGen UID:
482008
Concept ID:
C3280378
Disease or Syndrome
19.

Neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome

Primary coenzyme Q10 (CoQ10) deficiency is usually associated with multisystem involvement, including neurologic manifestations such as fatal neonatal encephalopathy with hypotonia; a late-onset slowly progressive multiple-system atrophy-like phenotype (neurodegeneration with autonomic failure and various combinations of parkinsonism and cerebellar ataxia, and pyramidal dysfunction); and dystonia, spasticity, seizures, and intellectual disability. Steroid-resistant nephrotic syndrome (SRNS), the hallmark renal manifestation, is often the initial manifestation either as isolated renal involvement that progresses to end-stage renal disease (ESRD), or associated with encephalopathy (seizures, stroke-like episodes, severe neurologic impairment) resulting in early death. Hypertrophic cardiomyopathy (HCM), retinopathy or optic atrophy, and sensorineural hearing loss can also be seen. [from GeneReviews]

MedGen UID:
1799985
Concept ID:
C5568562
Disease or Syndrome
20.

Mitochondrial complex III deficiency nuclear type 2

Mitochondrial complex III deficiency nuclear type 2 is an autosomal recessive severe neurodegenerative disorder that usually presents in childhood, but may show later onset, even in adulthood. Affected individuals have motor disability, with ataxia, apraxia, dystonia, and dysarthria, associated with necrotic lesions throughout the brain. Most patients also have cognitive impairment and axonal neuropathy and become severely disabled later in life (summary by Ghezzi et al., 2011). The disorder may present clinically as spinocerebellar ataxia or Leigh syndrome, or with psychiatric disturbances (Morino et al., 2014; Atwal, 2014; Nogueira et al., 2013). For a discussion of genetic heterogeneity of mitochondrial complex III deficiency, see MC3DN1 (124000). [from OMIM]

MedGen UID:
767519
Concept ID:
C3554605
Disease or Syndrome

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
External link. Please review our privacy policy.