U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 34

1.

Autosomal recessive limb-girdle muscular dystrophy type 2B

Dysferlinopathy includes a spectrum of muscle disease characterized by two major phenotypes: Miyoshi muscular dystrophy (MMD) and limb-girdle muscular dystrophy type 2B (LGMD2B); and two minor phenotypes: asymptomatic hyperCKemia and distal myopathy with anterior tibial onset (DMAT). MMD (median age of onset 19 years) is characterized by muscle weakness and atrophy, most marked in the distal parts of the legs, especially the gastrocnemius and soleus muscles. Over a period of years, the weakness and atrophy spread to the thighs and gluteal muscles. The forearms may become mildly atrophic with decrease in grip strength; the small muscles of the hands are spared. LGMD2B is characterized by early weakness and atrophy of the pelvic and shoulder girdle muscles in adolescence or young adulthood, with slow progression. Other phenotypes in this spectrum are scapuloperoneal syndrome and congenital muscular dystrophy. Asymptomatic hyperCKemia is characterized by marked elevation of serum CK concentration only. DMAT is characterized by early and predominant distal muscle weakness, particularly of the muscles of the anterior compartment of the legs. [from GeneReviews]

MedGen UID:
338149
Concept ID:
C1850889
Disease or Syndrome
2.

Congenital multicore myopathy with external ophthalmoplegia

Congenital myopathy-1B (CMYO1B) is an autosomal recessive disorder of skeletal muscle characterized by severe hypotonia and generalized muscle weakness apparent soon after birth or in early childhood with delayed motor development, generalized muscle weakness and atrophy, and difficulty walking or running. Affected individuals show proximal muscle weakness with axial and shoulder girdle involvement, external ophthalmoplegia, and bulbar weakness, often resulting in feeding difficulties and respiratory insufficiency. Orthopedic complications such as joint laxity, distal contractures, hip dislocation, cleft palate, and scoliosis are commonly observed. Serum creatine kinase is normal. The phenotype is variable in severity (Jungbluth et al., 2005; Bharucha-Goebel et al., 2013). Some patients show symptoms in utero, including reduced fetal movements, polyhydramnios, and intrauterine growth restriction. The most severely affected patients present in utero with fetal akinesia, arthrogryposis, and lung hypoplasia resulting in fetal or perinatal death (McKie et al., 2014). Skeletal muscle biopsy of patients with recessive RYR1 mutations can show variable features, including multiminicores (Ferreiro and Fardeau, 2002), central cores (Jungbluth et al., 2002), congenital fiber-type disproportion (CFTD) (Monnier et al., 2009), and centronuclear myopathy (Wilmshurst et al., 2010). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000). [from OMIM]

MedGen UID:
340597
Concept ID:
C1850674
Disease or Syndrome
3.

Myosin storage myopathy

Autosomal dominant myosin storage congenital myopathy-7A (CMYO7A) is a skeletal muscle disorder with wide phenotypic variability. The age at symptom onset can range from early childhood to late adulthood. Affected individuals have proximal muscle weakness affecting the upper and lower limbs and distal muscle weakness of the lower limbs, resulting in gait difficulties and scapular winging (scapuloperoneal myopathy). Additional features may include thin habitus, high-arched palate, foot drop, pes cavus, calf pseudohypertrophy, and decreased reflexes. The severity is also variable: some patients develop respiratory insufficiency, joint contractures, and scoliosis in the first decades, whereas others are clinically unaffected, but show subtle signs of the disorder on examination. Serum creatine kinase may be normal or elevated. The disease is usually slowly progressive and most patients remain ambulatory. Skeletal muscle biopsy can show different abnormalities, including hyaline bodies, type 1 fiber predominance, congenital fiber-type disproportion (CFTD), and nonspecific myopathic changes with myofibrillar disarray. Intrafamilial variability is common (Dye et al., 2006; Pegoraro et al., 2007; review by Tajsharghi and Oldfors, 2013). For a discussion of genetic heterogeneity of congenital myopathy, see CMYO1A (117000). [from OMIM]

MedGen UID:
374868
Concept ID:
C1842160
Disease or Syndrome
4.

Autosomal dominant limb-girdle muscular dystrophy type 1D (DNAJB6)

Autosomal dominant limb-girdle muscular dystrophy is characterized by proximal and/or distal muscle weakness and atrophy. The age at onset is variable and can range from the first to the sixth decade, although later onset is less common. Most patients present with proximal muscle weakness that progresses to distal involvement, but some can present with distal impairment. The severity is variable: patients with a more severe phenotype can lose ambulation after several decades and have facial weakness with bulbar and respiratory involvement. Muscle biopsy shows dystrophic changes with protein aggregates, myofibrillar degeneration, and rimmed vacuoles (summary by Ruggieri et al., 2015). Genetic Heterogeneity of Autosomal Dominant Limb-Girdle Muscular Dystrophy Other forms of autosomal dominant LGMD include LGMDD2 (608423), previously LGMD1F, caused by mutation in the TNPO3 gene (610032) on chromosome 7q32; LGMDD3 (609115), previously LGMD1G, caused by mutation in the HNRNPDL gene (607137) on chromosome 4q21; and LGMDD4 (618129), previously LGMD1I, caused by mutation in the CAPN3 gene (114240) on chromosome 15q15. For a discussion of autosomal recessive LGMD, see 253600. [from OMIM]

MedGen UID:
1648441
Concept ID:
C4721885
Disease or Syndrome
5.

Charcot-Marie-Tooth disease axonal type 2O

A rare genetic subtype of autosomal dominant Charcot-Marie-Tooth disease type 2 with characteristics of early childhood-onset of slowly progressive, predominantly distal, lower limb muscle weakness and atrophy, delayed motor development, variable sensory loss and pes cavus in the presence of normal or near-normal nerve conduction velocities. Additional variable features may include proximal muscle weakness, abnormal gait, arthrogryposis, scoliosis, cognitive impairment, and spasticity. Caused by heterozygous mutation in the DYNC1H1 gene on chromosome 14q32. [from SNOMEDCT_US]

MedGen UID:
481850
Concept ID:
C3280220
Disease or Syndrome
6.

Autosomal recessive limb-girdle muscular dystrophy type 2G

Autosomal recessive limb-girdle muscular dystrophy-7 (LGMDR7), also known as LGMDR7, is a skeletal muscle disorder with age of onset in the first or second decade of life. Weakness of proximal and some distal muscles progresses to inability to walk by the third or fourth decade, although some individuals retain the ability to walk without support later. Heart involvement may be present. Creatine kinase levels are increased as much as 30-fold (summary by Moreira et al., 2000). For a general description and a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600). [from OMIM]

MedGen UID:
400895
Concept ID:
C1866008
Disease or Syndrome
7.

Early-onset myopathy with fatal cardiomyopathy

Salih myopathy is characterized by muscle weakness (manifest during the neonatal period or in early infancy) and delayed motor development; children acquire independent walking between ages 20 months and four years. In the first decade of life, global motor performance is stable or tends to improve. Moderate joint and neck contractures and spinal rigidity may manifest in the first decade but become more obvious in the second decade. Scoliosis develops after age 11 years. Cardiac dysfunction manifests between ages five and 16 years, progresses rapidly, and leads to death between ages eight and 20 years, usually from heart rhythm disturbances. [from GeneReviews]

MedGen UID:
435983
Concept ID:
C2673677
Disease or Syndrome
8.

Autosomal dominant childhood-onset proximal spinal muscular atrophy without contractures

Spinal muscular atrophy (SMA) is a hereditary neuromuscular disorder characterized by degeneration of spinal cord motor neurons resulting in muscle weakness. SMALED shows autosomal dominant inheritance with muscle weakness predominantly affecting the proximal lower extremities (Harms et al., 2010). The most common form of SMA (see, e.g., SMA1, 253300) shows autosomal recessive inheritance and is due to mutation in the SMN1 gene (600354) on chromosome 5q. Genetic Heterogeneity of Lower Extremity-Predominant Spinal Muscular Atrophy See also SMALED2A (615290) and SMALED2B (618291), both of which are caused by mutation in the BICD2 gene (609797) on chromosome 9q22. SMALED2A and SMALED2B differ in age at onset and severity, with SMALED2B being more severe. [from OMIM]

MedGen UID:
1830501
Concept ID:
C5780022
Disease or Syndrome
9.

Miyoshi muscular dystrophy 3

The spectrum of ANO5 muscle disease is a continuum that ranges from asymptomatic hyperCKemia and exercise-induced myalgia to proximal and/or distal muscle weakness. The most typical presentation is limb-girdle muscular dystrophy type 2L (LGMD2L) with late-onset proximal lower-limb weakness in the fourth or fifth decade (range 15-70 years). Less common is Miyoshi-like disease (Miyoshi muscular dystrophy 3) with early-adult-onset calf distal myopathy (around age 20 years). Incidental hyperCKemia may be present even earlier. Initial symptoms are walking difficulties, reduced sports performance, and difficulties in standing on toes as well as nonspecific exercise myalgia and/or burning sensation in the calf muscles. Muscle weakness and atrophy are frequently asymmetric. Cardiac findings can include cardiomyopathy and arrhythmias and/or left ventricular dysfunction. Bulbar or respiratory symptoms have not been reported. Females have milder disease manifestations than males. Disease progression is slow in both the LGMD and distal forms; ambulation is preserved until very late in the disease course. Life span is normal. [from GeneReviews]

MedGen UID:
413750
Concept ID:
C2750076
Disease or Syndrome
10.

Myopathy, reducing body, X-linked, childhood-onset

Reducing-body myopathy (RBM) is a rare myopathy characterized pathologically by the presence of intracytoplasmic inclusion bodies strongly stained by menadione-linked alpha-glycerophosphate dehydrogenase (MAG) in the absence of substrate, alpha-glycerophosphate. The term 'reducing body' refers to the reducing activity of the inclusions to nitroblue tetrazolium (NBT) in the absence of substrate. This condition is also commonly associated with rimmed vacuoles and cytoplasmic bodies. The clinical features of RBM are variable; a severe form has onset in infancy or early childhood and results in severe disability or early death (RBMX1A; 300717), and a less severe form has onset in late childhood or adulthood (RBMX1B) (summary by Liewluck et al., 2007 and Shalaby et al., 2009). [from OMIM]

MedGen UID:
904593
Concept ID:
C4225159
Disease or Syndrome
11.

Bethlem myopathy 2

Bethlem myopathy-2 (BTHLM2) is characterized by congenital hypotonia and myopathy. Motor development is delayed, but muscle strength improves with age, and patients are able to achieve ambulation. Proximal joint contractures that improve over time, as well as joint hyperlaxity, are also present. Muscle biopsy shows mild variability in fiber diameter, without degeneration or regeneration (Zou et al., 2014; Hicks et al., 2014). For a discussion of genetic heterogeneity of Bethlem myopathy, see BTHLM1 (158810). [from OMIM]

MedGen UID:
907426
Concept ID:
C4225313
Disease or Syndrome
12.

Peroxisome biogenesis disorder 5B

The overlapping phenotypes of neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) represent the milder manifestations of the Zellweger syndrome spectrum (ZSS) of peroxisome biogenesis disorders. The clinical course of patients with the NALD and IRD presentation is variable and may include developmental delay, hypotonia, liver dysfunction, sensorineural hearing loss, retinal dystrophy, and visual impairment. Children with the NALD presentation may reach their teens, and those with the IRD presentation may reach adulthood (summary by Waterham and Ebberink, 2012). For a complete phenotypic description and a discussion of genetic heterogeneity of PBD(NALD/IRD), see 601539. Individuals with mutations in the PEX2 gene have cells of complementation group 5 (CG5, equivalent to CG10 and CGF). For information on the history of PBD complementation groups, see 214100. [from OMIM]

MedGen UID:
762202
Concept ID:
C3542026
Disease or Syndrome
13.

Congenital myasthenic syndrome 11

Congenital myasthenic syndrome associated with AChR deficiency is a disorder of the postsynaptic neuromuscular junction (NMJ) clinically characterized by early-onset muscle weakness with variable severity. Electrophysiologic studies show low amplitude of the miniature endplate potential (MEPP) and current (MEPC) resulting from deficiency of AChR at the endplate. Treatment with cholinesterase inhibitors or amifampridine may be helpful (summary by Engel et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462). [from OMIM]

MedGen UID:
902189
Concept ID:
C4225367
Disease or Syndrome
14.

Nemaline myopathy 6

Nemaline myopathy-6 is an autosomal dominant skeletal muscle disorder characterized by childhood onset of slowly progressive proximal muscle weakness, exercise intolerance, and slow movements with stiff muscles. Patients are unable to run or correct themselves from falling over. Histopathologic changes seen on skeletal muscle biopsy include nemaline rods, cores devoid of oxidative enzyme activity, and predominance of hypertrophic type 1 fibers. There is no cardiac or respiratory involvement (summary by Sambuughin et al., 2010). [from OMIM]

MedGen UID:
373095
Concept ID:
C1836472
Disease or Syndrome
15.

Myopathy, tubular aggregate, 1

Tubular aggregates in muscle, first described by Engel (1964), are structures of variable appearance consisting of an outer tubule containing either one or more microtubule-like structures or amorphous material. They are a nonspecific pathologic finding that may occur in a variety of circumstances, including alcohol- and drug-induced myopathies, exercise-induced cramps or muscle weakness, and inherited myopathies. Tubular aggregates are derived from the sarcoplasmic reticulum (Salviati et al., 1985) and are believed to represent an adaptive mechanism aimed at regulating an increased intracellular level of calcium in order to prevent the muscle fibers from hypercontraction and necrosis (Martin et al., 1997; Muller et al., 2001). Genetic Heterogeneity of Tubular Aggregate Myopathy See also TAM2 (615883), caused by mutation in the ORAI1 gene (610277) on chromosome 12q24. [from OMIM]

MedGen UID:
860163
Concept ID:
C4011726
Disease or Syndrome
16.

Charcot-Marie-Tooth disease dominant intermediate C

A rare hereditary motor and sensory neuropathy characterized by intermediate motor median nerve conduction velocities (usually between 25 and 60 m/s). It presents with moderately severe, slowly progressive usual clinical features of Charcot-Marie-Tooth disease (muscle weakness and atrophy of the distal extremities, distal sensory loss, reduced or absent deep tendon reflexes, feet deformities, extensor digitorum brevis atrophy). Findings in nerve biopsies include age-dependent axonal degeneration, reduced number of large myelinated fibers, segmental remyelination, and no onion bulbs. [from SNOMEDCT_US]

MedGen UID:
334023
Concept ID:
C1842237
Disease or Syndrome
17.

Brody myopathy

Brody disease (BROD) is an autosomal recessive skeletal muscle disorder characterized by exercise-induced muscle stiffness and cramps primarily affecting the arms, legs, and eyelids, although more generalized muscle involvement may also occur. Symptom onset is most often in the first decade, but many patients present and are diagnosed later in life. Skeletal muscle biopsy typically shows variation in fiber size, increased internal nuclei, and atrophy of type II muscle fibers. Rare patients have been reported to develop malignant hyperthermia after administration of anesthesia, suggesting that patients with the disorder should be tested. The disorder results from defective relaxation of fast-twitch (type II) skeletal muscle fibers due to defects in calcium homeostasis and reuptake in the muscle fiber (summary by Odermatt et al., 2000 and Molenaar et al., 2020). [from OMIM]

MedGen UID:
371441
Concept ID:
C1832918
Disease or Syndrome
18.

Autosomal dominant limb-girdle muscular dystrophy type 1F

Autosomal dominant limb-girdle muscular dystrophy-2 (LGMDD2) is a myopathy characterized by proximal muscle weakness primarily affecting the lower limbs, but also affecting the upper limbs in most patients. Affected individuals also have distal muscle weakness of the hands and lower leg muscles. There is variability in presentation and progression. Some patients present in early childhood with mildly delayed walking and difficulty running and jumping, whereas others present as adults with mainly pelvic-girdle weakness. Patients with early onset tend to have a more severe disorder, and may develop contractures, loss of independent ambulation, and respiratory insufficiency. Muscle biopsy shows dystrophic changes with abnormal nuclei, rimmed vacuoles, and filamentous inclusions (summary by Melia et al., 2013). For a phenotypic description and a discussion of genetic heterogeneity of autosomal dominant limb-girdle muscular dystrophy, see LGMDD1 (603511). [from OMIM]

MedGen UID:
333983
Concept ID:
C1842062
Disease or Syndrome
19.

Congenital myasthenic syndrome 8

Congenital myasthenic syndromes are genetic disorders of the neuromuscular junction (NMJ) that are classified by the site of the transmission defect: presynaptic, synaptic, and postsynaptic. CMS8 is an autosomal recessive disorder characterized by prominent defects of both the pre- and postsynaptic regions. Affected individuals have onset of muscle weakness in early childhood; the severity of the weakness and muscles affected is variable (summary by Maselli et al., 2012). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462). [from OMIM]

MedGen UID:
815069
Concept ID:
C3808739
Disease or Syndrome
20.

Neutral lipid storage myopathy

Neutral lipid storage disease with myopathy (NLSDM) is an autosomal recessive muscle disorder characterized by adult onset of slowly progressive proximal muscle weakness affecting the upper and lower limbs and associated with increased serum creatine kinase; distal muscle weakness may also occur. About half of patients develop cardiomyopathy later in the disease course. Other variable features include diabetes mellitus, hepatic steatosis, hypertriglyceridemia, and possibly sensorineural hearing loss. Leukocytes and muscle cells show cytoplasmic accumulation of triglycerides (summary by Reilich et al., 2011). Neutral lipid storage disease with myopathy belongs to a group of disorders termed neutral lipid storage disorders (NLSDs). These disorders are characterized by the presence of triglyceride-containing cytoplasmic droplets in leukocytes and in other tissues, including bone marrow, skin, and muscle. Chanarin-Dorfman syndrome (CDS; 275630) is defined as NLSD with ichthyosis (NLSDI). Patients with NLSDM present with myopathy but without ichthyosis (summary by Fischer et al., 2007). [from OMIM]

MedGen UID:
339913
Concept ID:
C1853136
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity