Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Elevated circulating creatine kinase concentration
An elevation of the level of the enzyme creatine kinase (also known as creatine phosphokinase (CK; EC 2.7.3.2) in the blood. CK levels can be elevated in a number of clinical disorders such as myocardial infarction, rhabdomyolysis, and muscular dystrophy. [from HPO]
Desmin-related myofibrillar myopathy
Myofibrillar myopathy (MFM) is a noncommittal term that refers to a group of morphologically homogeneous, but genetically heterogeneous chronic neuromuscular disorders. The morphologic changes in skeletal muscle in MFM result from disintegration of the sarcomeric Z disc and the myofibrils, followed by abnormal ectopic accumulation of multiple proteins involved in the structure of the Z disc, including desmin, alpha-B-crystallin (CRYAB; 123590), dystrophin (300377), and myotilin (TTID; 604103). Genetic Heterogeneity of Myofibrillar Myopathy Other forms of MFM include MFM2 (608810), caused by mutation in the CRYAB gene (123590); MFM3 (609200), caused by mutation in the MYOT gene (604103); MFM4 (609452), caused by mutation in the ZASP gene (LDB3; 605906); MFM5 (609524), caused by mutation in the FLNC gene (102565); MFM6 (612954), caused by mutation in the BAG3 gene (603883); MFM7 (617114), caused by mutation in the KY gene (605739); MFM8 (617258), caused by mutation in the PYROXD1 gene (617220); MFM9 (603689), caused by mutation in the TTN gene (188840); MFM10 (619040), caused by mutation in the SVIL UNC45B gene (611220); MFM11 (619178), caused by mutation in the UNC45B gene (611220); and MFM12 (619424), caused by mutation in the MYL2 gene (160781). 'Desmin-related myopathy' is another term referring to MFM in which there are intrasarcoplasmic aggregates of desmin, usually in addition to other sarcomeric proteins. Rigid spine syndrome (602771), caused by mutation in the SEPN1 gene (606210), is another desmin-related myopathy. Goebel (1995) provided a review of desmin-related myopathy. [from OMIM]
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 1
POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+"). [from GeneReviews]
Actin accumulation myopathy
An inherited myopathy caused by mutations in the ACTA1 gene, encoding actin, alpha skeletal muscle. The phenotype is highly variable, and as such attempts at classification by clinical features is not optimal. Generally, affected individuals have generalized muscle weakness, typically involving proximal muscles, the face, bulbar and respiratory muscles. [from NCI]
Nemaline myopathy 2
Nemaline myopathy-2 (NEM2) is an autosomal recessive skeletal muscle disorder with a wide range of severity. The most common clinical presentation is early-onset (in infancy or childhood) muscle weakness predominantly affecting proximal limb muscles. Muscle biopsy shows accumulation of Z-disc and thin filament proteins into aggregates named 'nemaline bodies' or 'nemaline rods,' usually accompanied by disorganization of the muscle Z discs. The clinical and histologic spectrum of entities caused by variants in the NEB gene is a continuum, ranging in severity. The distribution of weakness can vary from generalized muscle weakness, more pronounced in proximal limb muscles, to distal-only involvement, although neck flexor weakness appears to be rather consistent. Histologic patterns range from a severe usually nondystrophic disturbance of the myofibrillar pattern to an almost normal pattern, with or without nemaline bodies, sometimes combined with cores (summary by Lehtokari et al., 2014). Genetic Heterogeneity of Nemaline Myopathy See also NEM1 (255310), caused by mutation in the tropomyosin-3 gene (TPM3; 191030) on chromosome 1q22; NEM3 (161800), caused by mutation in the alpha-actin-1 gene (ACTA1; 102610) on chromosome 1q42; NEM4 (609285), caused by mutation in the beta-tropomyosin gene (TPM2; 190990) on chromosome 9p13; NEM5 (605355), also known as Amish nemaline myopathy, caused by mutation in the troponin T1 gene (TNNT1; 191041) on chromosome 19q13; NEM6 (609273), caused by mutation in the KBTBD13 gene (613727) on chromosome 15q22; NEM7 (610687), caused by mutation in the cofilin-2 gene (CFL2; 601443) on chromosome 14q13; NEM8 (615348), caused by mutation in the KLHL40 gene (615340), on chromosome 3p22; NEM9 (615731), caused by mutation in the KLHL41 gene (607701) on chromosome 2q31; NEM10 (616165), caused by mutation in the LMOD3 gene (616112) on chromosome 3p14; and NEM11 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. Several of the genes encode components of skeletal muscle sarcomeric thin filaments (Sanoudou and Beggs, 2001). Mutations in the NEB gene are the most common cause of nemaline myopathy (Lehtokari et al., 2006). [from OMIM]
GNE myopathy
GNE myopathy is a slowly progressive muscle disease that typically presents between age 20 and 40 years with bilateral foot drop caused by anterior tibialis weakness. Lower-extremity muscle involvement progresses from the anterior to the posterior compartment of the lower leg, followed by hamstrings, then hip girdle muscles, with relative sparing of the quadriceps. A wheelchair may be needed about ten to 20 years after the onset of manifestations. The upper extremities, which may be affected within five to ten years of disease onset, do not necessarily follow a distal-to-proximal progression. In advanced stages, neck and core muscles can become affected. [from GeneReviews]
Autosomal recessive limb-girdle muscular dystrophy type 2B
Dysferlinopathy includes a spectrum of muscle disease characterized by two major phenotypes: Miyoshi muscular dystrophy (MMD) and limb-girdle muscular dystrophy type 2B (LGMD2B); and two minor phenotypes: asymptomatic hyperCKemia and distal myopathy with anterior tibial onset (DMAT). MMD (median age of onset 19 years) is characterized by muscle weakness and atrophy, most marked in the distal parts of the legs, especially the gastrocnemius and soleus muscles. Over a period of years, the weakness and atrophy spread to the thighs and gluteal muscles. The forearms may become mildly atrophic with decrease in grip strength; the small muscles of the hands are spared. LGMD2B is characterized by early weakness and atrophy of the pelvic and shoulder girdle muscles in adolescence or young adulthood, with slow progression. Other phenotypes in this spectrum are scapuloperoneal syndrome and congenital muscular dystrophy. Asymptomatic hyperCKemia is characterized by marked elevation of serum CK concentration only. DMAT is characterized by early and predominant distal muscle weakness, particularly of the muscles of the anterior compartment of the legs. [from GeneReviews]
Danon disease
Danon disease is a multisystem condition with predominant involvement of the heart, skeletal muscles, and retina, with overlying cognitive dysfunction. Males are typically more severely affected than females. Males usually present with childhood onset concentric hypertrophic cardiomyopathy that is progressive and often requires heart transplantation. Rarely, hypertrophic cardiomyopathy can evolve to resemble dilated cardiomyopathy. Most affected males also have cardiac conduction abnormalities. Skeletal muscle weakness may lead to delayed acquisition of motor milestones. Learning disability and intellectual disability, most often in the mild range, are common. Additionally, affected males can develop retinopathy with subsequent visual impairment. The clinical features in females are broader and more variable. Females are more likely to have dilated cardiomyopathy, with a smaller proportion requiring heart transplantation compared to affected males. Cardiac conduction abnormalities, skeletal muscle weakness, mild cognitive impairment, and pigmentary retinopathy are variably seen in affected females. [from GeneReviews]
Myosin storage myopathy
Autosomal dominant myosin storage congenital myopathy-7A (CMYP7A) is a skeletal muscle disorder with wide phenotypic variability. The age at symptom onset can range from early childhood to late adulthood. Affected individuals have proximal muscle weakness affecting the upper and lower limbs and distal muscle weakness of the lower limbs, resulting in gait difficulties and scapular winging (scapuloperoneal myopathy). Additional features may include thin habitus, high-arched palate, foot drop, pes cavus, calf pseudohypertrophy, and decreased reflexes. The severity is also variable: some patients develop respiratory insufficiency, joint contractures, and scoliosis in the first decades, whereas others are clinically unaffected, but show subtle signs of the disorder on examination. Serum creatine kinase may be normal or elevated. The disease is usually slowly progressive and most patients remain ambulatory. Skeletal muscle biopsy can show different abnormalities, including hyaline bodies, type 1 fiber predominance, congenital fiber-type disproportion (CFTD), and nonspecific myopathic changes with myofibrillar disarray. Intrafamilial variability is common (Dye et al., 2006; Pegoraro et al., 2007; review by Tajsharghi and Oldfors, 2013). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]
Sarcotubular myopathy
A mild subtype of autosomal recessive limb girdle muscular dystrophy characterized by slowly progressive proximal muscle weakness and wasting of the pelvic and shoulder girdles with onset that usually occurs during the second or third decade of life. Clinical presentation is variable and can include calf psuedohypertrophy, joint contractures, scapular winging, muscle cramping and/or facial and respiratory muscle involvement. [from ORDO]
Autosomal recessive limb-girdle muscular dystrophy type 2D
Autosomal recessive limb-girdle muscular dystrophy-3 (LGMDR3) affects mainly the proximal muscles and results in difficulty walking. Most individuals have onset in childhood; the disorder is progressive. Other features may include scapular winging, calf pseudohypertrophy, and contractures. Cardiomyopathy has rarely been reported (summary by Babameto-Laku et al., 2011). For a discussion of genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy, see LGMDR1 (253600). [from OMIM]
Tibial muscular dystrophy
Udd distal myopathy – tibial muscular dystrophy (UDM-TMD) is characterized by weakness of ankle dorsiflexion and inability to walk on the heels after age 30 years. Disease progression is slow and muscle weakness remains confined to the anterior compartment muscles for many years. The long toe extensors become clinically involved after ten to 20 years, leading to foot drop and clumsiness when walking. In the mildest form, UDM-TMD can remain unnoticed even in the elderly. EMG shows profound myopathic changes in the anterior tibial muscle, but preservation of the extensor brevis muscle. Muscle MRI shows selective fatty degeneration of the anterior tibial muscles and other anterior compartment muscles of the lower legs. Serum CK concentration may be normal or slightly elevated. Muscle biopsy shows progressive dystrophic changes in the tibialis anterior muscle with rimmed vacuoles at the early stages and replacement with adipose tissue at later stages of the disease. [from GeneReviews]
Mitochondrial DNA depletion syndrome, myopathic form
TK2-related mitochondrial DNA (mtDNA) maintenance defect is a phenotypic continuum that ranges from severe to mild. To date, approximately 107 individuals with a molecularly confirmed diagnosis have been reported. Three main subtypes of presentation have been described: Infantile-onset myopathy with neurologic involvement and rapid progression to early death. Affected individuals experience progressive muscle weakness leading to respiratory failure. Some individuals develop dysarthria, dysphagia, and/or hearing loss. Cognitive function is typically spared. Juvenile/childhood onset with generalized proximal weakness and survival to at least 13 years. Late-/adult-onset myopathy with facial and limb weakness and mtDNA deletions. Some affected individuals develop respiratory insufficiency, chronic progressive external ophthalmoplegia, dysphagia, and dysarthria. [from GeneReviews]
X-linked myopathy with postural muscle atrophy
Emery-Dreifuss muscular dystrophy (EDMD) is characterized by the clinical triad of: joint contractures that begin in early childhood; slowly progressive muscle weakness and wasting initially in a humero-peroneal distribution that later extends to the scapular and pelvic girdle muscles; and cardiac involvement that may manifest as palpitations, presyncope and syncope, poor exercise tolerance, and congestive heart failure along with variable cardiac rhythm disturbances. Age of onset, severity, and progression of muscle and cardiac involvement demonstrate both inter- and intrafamilial variability. Clinical variability ranges from early onset with severe presentation in childhood to late onset with slow progression in adulthood. In general, joint contractures appear during the first two decades, followed by muscle weakness and wasting. Cardiac involvement usually occurs after the second decade and respiratory function may be impaired in some individuals. [from GeneReviews]
Mitochondrial DNA depletion syndrome 12B (cardiomyopathic type), autosomal recessive
Mitochondrial DNA depletion syndrome-12B is an autosomal recessive mitochondrial disorder characterized by childhood onset of slowly progressive hypertrophic cardiomyopathy and generalized skeletal myopathy resulting in exercise intolerance, and, in some patients, muscle weakness and atrophy. Skeletal muscle biopsy shows ragged-red fibers, mtDNA depletion, and accumulation of abnormal mitochondria (summary by Echaniz-Laguna et al., 2012). For a discussion of genetic heterogeneity of mtDNA depletion syndromes, see MTDPS1 (603041). [from OMIM]
Autosomal recessive limb-girdle muscular dystrophy type 2L
The spectrum of ANO5 muscle disease is a continuum that ranges from asymptomatic hyperCKemia and exercise-induced myalgia to proximal and/or distal muscle weakness. The most typical presentation is limb-girdle muscular dystrophy type 2L (LGMD2L) with late-onset proximal lower-limb weakness in the fourth or fifth decade (range 15-70 years). Less common is Miyoshi-like disease (Miyoshi muscular dystrophy 3) with early-adult-onset calf distal myopathy (around age 20 years). Incidental hyperCKemia may be present even earlier. Initial symptoms are walking difficulties, reduced sports performance, and difficulties in standing on toes as well as nonspecific exercise myalgia and/or burning sensation in the calf muscles. Muscle weakness and atrophy are frequently asymmetric. Cardiac findings can include cardiomyopathy and arrhythmias and/or left ventricular dysfunction. Bulbar or respiratory symptoms have not been reported. Females have milder disease manifestations than males. Disease progression is slow in both the LGMD and distal forms; ambulation is preserved until very late in the disease course. Life span is normal. [from GeneReviews]
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 1
Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal dominant 3
Progressive external ophthalmoplegia is characterized by multiple mitochondrial DNA deletions in skeletal muscle. The most common clinical features include adult onset of weakness of the external eye muscles and exercise intolerance. Patients with C10ORF2-linked adPEO may have other clinical features including proximal muscle weakness, ataxia, peripheral neuropathy, cardiomyopathy, cataracts, depression, and endocrine abnormalities (summary by Fratter et al., 2010). For a general phenotypic description and a discussion of genetic heterogeneity of autosomal dominant progressive external ophthalmoplegia, see PEOA1 (157640). PEO caused by mutations in the POLG gene (174763) are associated with more complicated phenotypes than those forms caused by mutations in the SLC25A4 (103220) or C10ORF2 genes (Lamantea et al., 2002). [from OMIM]
Autosomal dominant centronuclear myopathy
Centronuclear myopathy-1 (CNM1) is an autosomal dominant congenital myopathy characterized by slowly progressive muscular weakness and wasting. The disorder involves mainly limb girdle, trunk, and neck muscles but may also affect distal muscles. Weakness may be present during childhood or adolescence or may not become evident until the third decade of life, and some affected individuals become wheelchair-bound in their fifties. Ptosis and limitation of eye movements occur frequently. The most prominent histopathologic features include high frequency of centrally located nuclei in a large number of extrafusal muscle fibers (which is the basis of the name of the disorder), radial arrangement of sarcoplasmic strands around the central nuclei, and predominance and hypotrophy of type 1 fibers (summary by Bitoun et al., 2005). Genetic Heterogeneity of Centronuclear Myopathy Centronuclear myopathy is a genetically heterogeneous disorder. See also X-linked CNM (CNMX; 310400), caused by mutation in the MTM1 gene (300415) on chromosome Xq28; CNM2 (255200), caused by mutation in the BIN1 gene (601248) on chromosome 2q14; CNM4 (614807), caused by mutation in the CCDC78 gene (614666) on chromosome 16p13; CNM5 (615959), caused by mutation in the SPEG gene (615950) on chromosome 2q35; and CNM6 (617760), caused by mutation in the ZAK gene (609479) on chromosome 2q31. The mutation in the MYF6 gene that was reported to cause a form of CNM, formerly designated CNM3, has been reclassified as a variant of unknown significance; see 159991.0001. Some patients with mutation in the RYR1 gene (180901) have findings of centronuclear myopathy on skeletal muscle biopsy (see 255320). [from OMIM]
Autosomal recessive limb-girdle muscular dystrophy type 2J
A form of limb-girdle muscular dystrophy that usually has a childhood onset (but can range from the first to third decade of life) of severe progressive proximal weakness, eventually involving the distal muscles. Some patients may remain ambulatory but most are wheelchair dependant 20 years after onset. Caused by homozygous mutation in the titin gene (TTN). [from SNOMEDCT_US]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on