U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 72

1.

Arginase deficiency

Arginase deficiency in untreated individuals is characterized by episodic hyperammonemia of variable degree that is infrequently severe enough to be life threatening or to cause death. Most commonly, birth and early childhood are normal. Untreated individuals have slowing of linear growth at age one to three years, followed by development of spasticity, plateauing of cognitive development, and subsequent loss of developmental milestones. If untreated, arginase deficiency usually progresses to severe spasticity, loss of ambulation, complete loss of bowel and bladder control, and severe intellectual disability. Seizures are common and are usually controlled easily. Individuals treated from birth, either as a result of newborn screening or having an affected older sib, appear to have minimal symptoms. [from GeneReviews]

MedGen UID:
78688
Concept ID:
C0268548
Disease or Syndrome
2.

Charcot-Marie-Tooth disease X-linked dominant 1

GJB1 disorders are typically characterized by peripheral motor and sensory neuropathy with or without fixed CNS abnormalities and/or acute, self-limited episodes of transient neurologic dysfunction (especially weakness and dysarthria). Peripheral neuropathy typically manifests in affected males between ages five and 25 years. Although both men and women are affected, manifestations tend to be less severe in women, some of whom may remain asymptomatic. Less commonly, initial manifestations in some affected individuals are stroke-like episodes (acute fulminant episodes of reversible CNS dysfunction). [from GeneReviews]

MedGen UID:
98290
Concept ID:
C0393808
Disease or Syndrome
3.

Spinocerebellar ataxia type 6

Spinocerebellar ataxia type 6 (SCA6) is characterized by adult-onset, slowly progressive cerebellar ataxia, dysarthria, and nystagmus. The age of onset ranges from 19 to 73 years; mean age of onset is between 43 and 52 years. Initial symptoms are gait unsteadiness, stumbling, and imbalance (in ~90%) and dysarthria (in ~10%). Eventually all persons have gait ataxia, upper-limb incoordination, intention tremor, and dysarthria. Dysphagia and choking are common. Visual disturbances may result from diplopia, difficulty fixating on moving objects, horizontal gaze-evoked nystagmus, and vertical nystagmus. Hyperreflexia and extensor plantar responses occur in up to 40%-50%. Basal ganglia signs, including dystonia and blepharospasm, occur in up to 25%. Mentation is generally preserved. [from GeneReviews]

MedGen UID:
148458
Concept ID:
C0752124
Disease or Syndrome
4.

Peroxisome biogenesis disorder 1A (Zellweger)

Zellweger spectrum disorder (ZSD) is a phenotypic continuum ranging from severe to mild. While individual phenotypes (e.g., Zellweger syndrome [ZS], neonatal adrenoleukodystrophy [NALD], and infantile Refsum disease [IRD]) were described in the past before the biochemical and molecular bases of this spectrum were fully determined, the term "ZSD" is now used to refer to all individuals with a defect in one of the ZSD-PEX genes regardless of phenotype. Individuals with ZSD usually come to clinical attention in the newborn period or later in childhood. Affected newborns are hypotonic and feed poorly. They have distinctive facies, congenital malformations (neuronal migration defects associated with neonatal-onset seizures, renal cysts, and bony stippling [chondrodysplasia punctata] of the patella[e] and the long bones), and liver disease that can be severe. Infants with severe ZSD are significantly impaired and typically die during the first year of life, usually having made no developmental progress. Individuals with intermediate/milder ZSD do not have congenital malformations, but rather progressive peroxisome dysfunction variably manifest as sensory loss (secondary to retinal dystrophy and sensorineural hearing loss), neurologic involvement (ataxia, polyneuropathy, and leukodystrophy), liver dysfunction, adrenal insufficiency, and renal oxalate stones. While hypotonia and developmental delays are typical, intellect can be normal. Some have osteopenia; almost all have ameleogenesis imperfecta in the secondary teeth. [from GeneReviews]

MedGen UID:
1648474
Concept ID:
C4721541
Disease or Syndrome
5.

Actin accumulation myopathy

Congenital myopathy-2A (CMYP2A) is an autosomal dominant disorder of the skeletal muscle characterized by infantile- or childhood-onset myopathy with delayed motor milestones and nonprogressive muscle weakness. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype (CMYP2C; 620278). Some patients with de novo mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation. Less frequently, autosomal dominant transmission of the disorder within a family may occur when the ACTA1 mutation produces a phenotype compatible with adult life. Of note, intrafamilial variability has also been reported: a severely affected proband may be identified and then mildly affected or even asymptomatic relatives are found to carry the same mutation. The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021). The most common histologic finding on muscle biopsy in patients with ACTA1 mutations is the presence of 'nemaline rods,' which represent abnormal thread- or rod-like structures ('nema' is Greek for 'thread'). However, skeletal muscle biopsy from patients with mutations in the ACTA1 gene can show a range of pathologic phenotypes. These include classic rods, intranuclear rods, clumped filaments, cores, or fiber-type disproportion, all of which are nonspecific pathologic findings and not pathognomonic of a specific congenital myopathy. Most patients have clinically severe disease, regardless of the histopathologic phenotype (Nowak et al., 2007; Sewry et al., 2019). ACTA1 mutations are the second most common cause of congenital myopathies classified histologically as 'nemaline myopathy' after mutations in the NEB gene (161650). ACTA1 mutations are overrepresented in the severe phenotype with early death (Laing et al., 2009). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030). [from OMIM]

MedGen UID:
777997
Concept ID:
C3711389
Disease or Syndrome
6.

Nemaline myopathy 2

Nemaline myopathy-2 (NEM2) is an autosomal recessive skeletal muscle disorder with a wide range of severity. The most common clinical presentation is early-onset (in infancy or childhood) muscle weakness predominantly affecting proximal limb muscles. Muscle biopsy shows accumulation of Z-disc and thin filament proteins into aggregates named 'nemaline bodies' or 'nemaline rods,' usually accompanied by disorganization of the muscle Z discs. The clinical and histologic spectrum of entities caused by variants in the NEB gene is a continuum, ranging in severity. The distribution of weakness can vary from generalized muscle weakness, more pronounced in proximal limb muscles, to distal-only involvement, although neck flexor weakness appears to be rather consistent. Histologic patterns range from a severe usually nondystrophic disturbance of the myofibrillar pattern to an almost normal pattern, with or without nemaline bodies, sometimes combined with cores (summary by Lehtokari et al., 2014). Genetic Heterogeneity of Nemaline Myopathy See also NEM1 (255310), caused by mutation in the tropomyosin-3 gene (TPM3; 191030) on chromosome 1q22; NEM3 (161800), caused by mutation in the alpha-actin-1 gene (ACTA1; 102610) on chromosome 1q42; NEM4 (609285), caused by mutation in the beta-tropomyosin gene (TPM2; 190990) on chromosome 9p13; NEM5A (605355), also known as Amish nemaline myopathy, NEM5B (620386), and NEM5C (620389), all caused by mutation in the troponin T1 gene (TNNT1; 191041) on chromosome 19q13; NEM6 (609273), caused by mutation in the KBTBD13 gene (613727) on chromosome 15q22; NEM7 (610687), caused by mutation in the cofilin-2 gene (CFL2; 601443) on chromosome 14q13; NEM8 (615348), caused by mutation in the KLHL40 gene (615340), on chromosome 3p22; NEM9 (615731), caused by mutation in the KLHL41 gene (607701) on chromosome 2q31; NEM10 (616165), caused by mutation in the LMOD3 gene (616112) on chromosome 3p14; and NEM11 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. Several of the genes encode components of skeletal muscle sarcomeric thin filaments (Sanoudou and Beggs, 2001). Mutations in the NEB gene are the most common cause of nemaline myopathy (Lehtokari et al., 2006). [from OMIM]

MedGen UID:
342534
Concept ID:
C1850569
Disease or Syndrome
7.

Hyperekplexia 1

Hyperekplexia is an early-onset neurologic disorder characterized by an exaggerated startle response to sudden, unexpected auditory or tactile stimuli. Affected individuals have brief episodes of intense, generalized hypertonia in response to stimulation. Neonates may have prolonged periods of rigidity and are at risk for sudden death from apnea or aspiration. Many affected infants have inguinal hernias. The symptoms tend to resolve after infancy, but adults may have increased startle-induced falls and/or experience nocturnal muscle jerks (summary by Ryan et al., 1992). Genetic Heterogeneity of Hyperekplexia See also HKPX2 (614619), caused by mutation in the GLRB gene (138492) on chromosome 4q31; HKPX3 (614618), caused by mutation in the GLYT2 gene (SLC6A5; 604159) on chromosome 11p15; and HKPX4 (618011), caused by mutation in the ATAD1 gene (614452) on chromosome 10q23. Hyperekplexia can also occur in developmental and epileptic encephalopathy-8 (DEE8; 300607), caused by mutation in the ARHGEF9 gene (300429). See also sporadic stiff-man syndrome (184850) and the 'Jumping Frenchmen of Maine' (244100). [from OMIM]

MedGen UID:
1647581
Concept ID:
C4551954
Disease or Syndrome
8.

Dopa-responsive dystonia due to sepiapterin reductase deficiency

The phenotypic spectrum of sepiapterin reductase deficiency (SRD), which ranges from significant motor and cognitive deficits to only minimal findings, has not been completely elucidated. Clinical features in the majority of affected individuals include motor and speech delay, axial hypotonia, dystonia, weakness, and oculogyric crises; symptoms show diurnal fluctuation and sleep benefit. Other common features include parkinsonian signs (tremor, bradykinesia, masked facies, rigidity), limb hypertonia, hyperreflexia, intellectual disability, psychiatric and/or behavioral abnormalities, autonomic dysfunction, and sleep disturbances (hypersomnolence, difficulty initiating or maintaining sleep, and drowsiness). Most affected individuals have nonspecific features in infancy including developmental delays and axial hypotonia; other features develop over time. [from GeneReviews]

MedGen UID:
120642
Concept ID:
C0268468
Disease or Syndrome
9.

Charcot-Marie-Tooth disease type 4J

Charcot-Marie-Tooth disease type 4J is an autosomal recessive progressive neurologic disorder with a highly variable phenotype and onset ranging from early childhood to adulthood. Most patients have both proximal and distal asymmetric muscle weakness of the upper and lower limbs. There is significant motor dysfunction, followed by variably progressive sensory loss, which may be mild. Nerve conduction studies and nerve biopsies indicate demyelination as well as axonal loss (summary by Nicholson et al., 2011). For a phenotypic description and a discussion of genetic heterogeneity of autosomal recessive demyelinating Charcot-Marie-Tooth disease, see CMT4A (214400). [from OMIM]

MedGen UID:
370808
Concept ID:
C1970011
Disease or Syndrome
10.

Biotin-responsive basal ganglia disease

Biotin-thiamine-responsive basal ganglia disease (BTBGD) may present in childhood, early infancy, or adulthood. The classic presentation of BTBGD occurs in childhood (age 3-10 years) and is characterized by recurrent subacute encephalopathy manifest as confusion, seizures, ataxia, dystonia, supranuclear facial palsy, external ophthalmoplegia, and/or dysphagia which, if left untreated, can eventually lead to coma and even death. Dystonia and cogwheel rigidity are nearly always present; hyperreflexia, ankle clonus, and Babinski responses are common. Hemiparesis or quadriparesis may be seen. Episodes are often triggered by febrile illness or mild trauma or stress. Simple partial or generalized seizures are easily controlled with anti-seizure medication. An early-infantile Leigh-like syndrome / atypical infantile spasms presentation occurs in the first three months of life with poor feeding, vomiting, acute encephalopathy, and severe lactic acidosis. An adult-onset Wernicke-like encephalopathy presentation is characterized by acute onset of status epilepticus, ataxia, nystagmus, diplopia, and ophthalmoplegia in the second decade of life. Prompt administration of biotin and thiamine early in the disease course results in partial or complete improvement within days in the childhood and adult presentations, but most with the infantile presentation have had poor outcome even after supplementation with biotin and thiamine. [from GeneReviews]

MedGen UID:
375289
Concept ID:
C1843807
Disease or Syndrome
11.

Charcot-Marie-Tooth disease axonal type 2O

A rare genetic subtype of autosomal dominant Charcot-Marie-Tooth disease type 2 with characteristics of early childhood-onset of slowly progressive, predominantly distal, lower limb muscle weakness and atrophy, delayed motor development, variable sensory loss and pes cavus in the presence of normal or near-normal nerve conduction velocities. Additional variable features may include proximal muscle weakness, abnormal gait, arthrogryposis, scoliosis, cognitive impairment, and spasticity. Caused by heterozygous mutation in the DYNC1H1 gene on chromosome 14q32. [from SNOMEDCT_US]

MedGen UID:
481850
Concept ID:
C3280220
Disease or Syndrome
12.

Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis

POLG-related disorders comprise a continuum of overlapping phenotypes that were clinically defined long before their molecular basis was known. Most affected individuals have some, but not all, of the features of a given phenotype; nonetheless, the following nomenclature can assist the clinician in diagnosis and management. Onset of the POLG-related disorders ranges from infancy to late adulthood. Alpers-Huttenlocher syndrome (AHS), one of the most severe phenotypes, is characterized by childhood-onset progressive and ultimately severe encephalopathy with intractable epilepsy and hepatic failure. Childhood myocerebrohepatopathy spectrum (MCHS) presents between the first few months of life and about age three years with developmental delay or dementia, lactic acidosis, and a myopathy with failure to thrive. Other findings can include liver failure, renal tubular acidosis, pancreatitis, cyclic vomiting, and hearing loss. Myoclonic epilepsy myopathy sensory ataxia (MEMSA) now describes the spectrum of disorders with epilepsy, myopathy, and ataxia without ophthalmoplegia. MEMSA now includes the disorders previously described as spinocerebellar ataxia with epilepsy (SCAE). The ataxia neuropathy spectrum (ANS) includes the phenotypes previously referred to as mitochondrial recessive ataxia syndrome (MIRAS) and sensory ataxia neuropathy dysarthria and ophthalmoplegia (SANDO). About 90% of persons in the ANS have ataxia and neuropathy as core features. Approximately two thirds develop seizures and almost one half develop ophthalmoplegia; clinical myopathy is rare. Autosomal recessive progressive external ophthalmoplegia (arPEO) is characterized by progressive weakness of the extraocular eye muscles resulting in ptosis and ophthalmoparesis (or paresis of the extraocular muscles) without associated systemic involvement; however, caution is advised because many individuals with apparently isolated arPEO at the onset develop other manifestations of POLG-related disorders over years or decades. Of note, in the ANS spectrum the neuropathy commonly precedes the onset of PEO by years to decades. Autosomal dominant progressive external ophthalmoplegia (adPEO) typically includes a generalized myopathy and often variable degrees of sensorineural hearing loss, axonal neuropathy, ataxia, depression, parkinsonism, hypogonadism, and cataracts (in what has been called "chronic progressive external ophthalmoplegia plus," or "CPEO+"). [from GeneReviews]

MedGen UID:
375302
Concept ID:
C1843851
Disease or Syndrome
13.

Abortive cerebellar ataxia

'Behr syndrome' is a clinical term that refers to the constellation of early-onset optic atrophy accompanied by neurologic features, including ataxia, pyramidal signs, spasticity, and mental retardation (Behr, 1909; Thomas et al., 1984). Patients with mutations in genes other than OPA1 can present with clinical features reminiscent of Behr syndrome. Mutations in one of these genes, OPA3 (606580), result in type III 3-methylglutaconic aciduria (MGCA3; 258501). Lerman-Sagie (1995) noted that the abnormal urinary pattern in MGCA3 may not be picked up by routine organic acid analysis, suggesting that early reports of Behr syndrome with normal metabolic features may actually have been 3-methylglutaconic aciduria type III. [from OMIM]

MedGen UID:
66358
Concept ID:
C0221061
Disease or Syndrome
14.

Charcot-Marie-Tooth disease type 4D

Charcot-Marie-Tooth disease type 4D (CMT4D) is an autosomal recessive disorder of the peripheral nervous system characterized by early-onset distal muscle weakness and atrophy, foot deformities, and sensory loss affecting all modalities. Affected individuals develop deafness by the third decade of life (summary by Okamoto et al., 2014). For a phenotypic description and a discussion of genetic heterogeneity of autosomal recessive Charcot-Marie-Tooth disease, see CMT4A (214400). [from OMIM]

MedGen UID:
371304
Concept ID:
C1832334
Disease or Syndrome
15.

Muscular dystrophy-dystroglycanopathy type B5

MDDGB5 is an autosomal recessive congenital muscular dystrophy with impaired intellectual development and structural brain abnormalities (Brockington et al., 2001). It is part of a group of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as 'dystroglycanopathies' (Mercuri et al., 2006). For a discussion of genetic heterogeneity of congenital muscular dystrophy-dystroglycanopathy type B, see MDDGB1 (613155). [from OMIM]

MedGen UID:
335764
Concept ID:
C1847759
Disease or Syndrome
16.

Myopathy, myofibrillar, 9, with early respiratory failure

Hereditary myopathy with early respiratory failure (HMERF) is a slowly progressive myopathy that typically begins in the third to fifth decades of life. The usual presenting findings are gait disturbance relating to distal leg weakness or nocturnal respiratory symptoms due to respiratory muscle weakness. Weakness eventually generalizes and affects both proximal and distal muscles. Most affected individuals require walking aids within a few years of onset; some progress to wheelchair dependence and require nocturnal noninvasive ventilatory support about ten years after onset. The phenotype varies even among individuals within the same family: some remain ambulant until their 70s whereas others may require ventilator support in their 40s. [from GeneReviews]

MedGen UID:
350930
Concept ID:
C1863599
Disease or Syndrome
17.

Autosomal recessive limb-girdle muscular dystrophy type 2I

MDGDC5 is an autosomal recessive muscular dystrophy characterized by variable age at onset, normal cognition, and no structural brain changes (Brockington et al., 2001). It is part of a group of similar disorders resulting from defective glycosylation of alpha-dystroglycan (DAG1; 128239), collectively known as 'dystroglycanopathies' (Mercuri et al., 2006). For a discussion of genetic heterogeneity of muscular dystrophy-dystroglycanopathy type C, see MDDGC1 (609308). [from OMIM]

MedGen UID:
339580
Concept ID:
C1846672
Disease or Syndrome
18.

Nemaline myopathy 7

Nemaline myopathy-7 is an autosomal recessive congenital myopathy characterized by very early onset of hypotonia and delayed motor development. Affected individuals have difficulty walking and running due to proximal muscle weakness. The disorder is slowly progressive, and patients may lose independent ambulation. Muscle biopsy shows nemaline rods and may later show minicores, abnormal protein aggregates, and dystrophic changes (summary by Ockeloen et al., 2012). For a discussion of genetic heterogeneity of nemaline myopathy, see 161800. [from OMIM]

MedGen UID:
343979
Concept ID:
C1853154
Disease or Syndrome
19.

Benign hereditary chorea

NKX2-1-related disorders range from benign hereditary chorea (BHC) to choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress (also known as brain-lung-thyroid syndrome). Childhood-onset chorea, the hallmark of NKX2-1-related disorders, may or may not be associated with respiratory distress syndrome or congenital hypothyroidism. Chorea generally begins in early infancy or about age one year (most commonly) or in late childhood or adolescence, and progresses into the second decade after which it remains static or (rarely) remits. Pulmonary disease, the second most common manifestation, can include respiratory distress syndrome in neonates, interstitial lung disease in young children, and pulmonary fibrosis in older persons. The risk for pulmonary carcinoma is increased in young adults with an NKX2-1-related disorder. Thyroid dysfunction, the result of dysembryogenesis, can present as congenital hypothyroidism or compensated hypothyroidism. The risk for thyroid cancer is unknown and may not be increased. In one review, 50% of affected individuals had the full brain-lung-thyroid syndrome, 30% had involvement of brain and thyroid only, and 13% had isolated chorea only. [from GeneReviews]

MedGen UID:
98278
Concept ID:
C0393584
Disease or Syndrome
20.

Charcot-Marie-Tooth disease type 2E

A form of axonal Charcot-Marie-Tooth disease a peripheral sensorimotor neuropathy. Onset is in the first to sixth decade with a gait anomaly and a leg weakness that reaches the arms secondarily. Tendon reflexes are reduced or absent and after years all patients have a pes cavus. Other signs may be present including hearing loss and postural tremor. [from SNOMEDCT_US]

MedGen UID:
375127
Concept ID:
C1843225
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity