Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Paragangliomas 1
Hereditary paraganglioma-pheochromocytoma (PGL/PCC) syndromes are characterized by paragangliomas (tumors that arise from neuroendocrine tissues distributed along the paravertebral axis from the base of the skull to the pelvis) and pheochromocytomas (paragangliomas that are confined to the adrenal medulla). Sympathetic paragangliomas cause catecholamine excess; parasympathetic paragangliomas are most often nonsecretory. Extra-adrenal parasympathetic paragangliomas are located predominantly in the skull base and neck (referred to as head and neck PGL [HNPGL]) and sometimes in the upper mediastinum; approximately 95% of such tumors are nonsecretory. In contrast, sympathetic extra-adrenal paragangliomas are generally confined to the lower mediastinum, abdomen, and pelvis, and are typically secretory. Pheochromocytomas, which arise from the adrenal medulla, typically lead to catecholamine excess. Symptoms of PGL/PCC result from either mass effects or catecholamine hypersecretion (e.g., sustained or paroxysmal elevations in blood pressure, headache, episodic profuse sweating, forceful palpitations, pallor, and apprehension or anxiety). The risk for developing metastatic disease is greater for extra-adrenal sympathetic paragangliomas than for pheochromocytomas. [from GeneReviews]
Acrocephalosyndactyly type I
Apert syndrome is characterized by the presence of multisuture craniosynostosis, midface retrusion, and syndactyly of the hands with fusion of the second through fourth nails. Almost all affected individuals have coronal craniosynostosis, and a majority also have involvement of the sagittal and lambdoid sutures. The midface in Apert syndrome is underdeveloped as well as retruded; a subset of affected individuals have cleft palate. The hand in Apert syndrome always includes fusion of the middle three digits; the thumb and fifth finger are sometimes also involved. Feeding issues, dental abnormalities, hearing loss, hyperhidrosis, and progressive synostosis of multiple bones (skull, hands, feet, carpus, tarsus, and cervical vertebrae) are also common. Multilevel airway obstruction may be present and can be due to narrowing of the nasal passages, tongue-based airway obstruction, and/or tracheal anomalies. Nonprogressive ventriculomegaly is present in a majority of individuals, with a small subset having true hydrocephalus. Most individuals with Apert syndrome have normal intelligence or mild intellectual disability; moderate-to-severe intellectual disability has been reported in some individuals. A minority of affected individuals have structural cardiac abnormalities, true gastrointestinal malformations, and anomalies of the genitourinary tract. [from GeneReviews]
Dyskeratosis congenita, X-linked
Dyskeratosis congenita and related telomere biology disorders (DC/TBD) are caused by impaired telomere maintenance resulting in short or very short telomeres. The phenotypic spectrum of telomere biology disorders is broad and includes individuals with classic dyskeratosis congenita (DC) as well as those with very short telomeres and an isolated physical finding. Classic DC is characterized by a triad of dysplastic nails, lacy reticular pigmentation of the upper chest and/or neck, and oral leukoplakia, although this may not be present in all individuals. People with DC/TBD are at increased risk for progressive bone marrow failure (BMF), myelodysplastic syndrome or acute myelogenous leukemia, solid tumors (usually squamous cell carcinoma of the head/neck or anogenital cancer), and pulmonary fibrosis. Other findings can include eye abnormalities (epiphora, blepharitis, sparse eyelashes, ectropion, entropion, trichiasis), taurodontism, liver disease, gastrointestinal telangiectasias, and avascular necrosis of the hips or shoulders. Although most persons with DC/TBD have normal psychomotor development and normal neurologic function, significant developmental delay is present in both forms; additional findings include cerebellar hypoplasia (Hoyeraal Hreidarsson syndrome) and bilateral exudative retinopathy and intracranial calcifications (Revesz syndrome and Coats plus syndrome). Onset and progression of manifestations of DC/TBD vary: at the mild end of the spectrum are those who have only minimal physical findings with normal bone marrow function, and at the severe end are those who have the diagnostic triad and early-onset BMF. [from GeneReviews]
Pheochromocytoma
Sandhoff disease
Sandhoff disease comprises a phenotypic continuum encompassing acute infantile, subacute juvenile, and late-onset disease. Although classification into these phenotypes is somewhat arbitrary, it is helpful in understanding the variation observed in the timing of disease onset, presenting manifestations, rate of progression, and life span. Acute infantile Sandhoff disease (onset age <6 months). Infants are generally normal at birth followed by progressive weakness and slowing of developmental progress, then developmental regression and severe neurologic impairment. Seizures are common. Death usually occurs between ages two and three years. Subacute juvenile Sandhoff disease (onset age 2-5 years). After attaining normal developmental milestones, developmental progress slows, followed by developmental regression and neurologic impairment (abnormal gait, dysarthria, and cognitive decline). Death (usually from aspiration) typically occurs in the early to late teens. Late-onset Sandhoff disease (onset older teen years or young adulthood). Nearly normal psychomotor development is followed by a range of neurologic findings (e.g., weakness, spasticity, dysarthria, and deficits in cerebellar function) and psychiatric findings (e.g., deficits in executive function and memory). Life expectancy is not necessarily decreased. [from GeneReviews]
Paragangliomas 4
Mitochondrial DNA depletion syndrome 9
SUCLG1-related mitochondrial DNA (mtDNA) depletion syndrome, encephalomyopathic form with methylmalonic aciduria is characterized in the majority of affected newborns by hypotonia, muscle atrophy, feeding difficulties, and lactic acidosis. Affected infants commonly manifest developmental delay / cognitive impairment, growth retardation / failure to thrive, hepatopathy, sensorineural hearing impairment, dystonia, and hypertonia. Notable findings in some affected individuals include hypertrophic cardiomyopathy, epilepsy, myoclonus, microcephaly, sleep disturbance, rhabdomyolysis, contractures, hypothermia, and/or hypoglycemia. Life span is shortened, with median survival of 20 months. [from GeneReviews]
Ullrich congenital muscular dystrophy 1
Collagen VI-related dystrophies (COL6-RDs) represent a continuum of overlapping clinical phenotypes with Bethlem muscular dystrophy at the milder end, Ullrich congenital muscular dystrophy (UCMD) at the more severe end, and a phenotype in between UCMD and Bethlem muscular dystrophy, referred to as intermediate COL6-RD. Bethlem muscular dystrophy is characterized by a combination of proximal muscle weakness and joint contractures. Hypotonia and delayed motor milestones occur in early childhood; mild hypotonia and weakness may be present congenitally. By adulthood, there is evidence of proximal weakness and contractures of the elbows, Achilles tendons, and long finger flexors. The progression of weakness is slow, and more than two thirds of affected individuals older than age 50 years remain independently ambulatory indoors, while relying on supportive means for mobility outdoors. Respiratory involvement is not a consistent feature. UCMD is characterized by congenital weakness, hypotonia, proximal joint contractures, and striking hyperlaxity of distal joints. Decreased fetal movements are frequently reported. Some affected children acquire the ability to walk independently; however, progression of the disease results in a loss of ambulation by age ten to eleven years. Early and severe respiratory insufficiency occurs in all individuals, resulting in the need for nocturnal noninvasive ventilation (NIV) in the form of bilevel positive airway pressure (BiPAP) by age 11 years. Intermediate COL6-RD is characterized by independent ambulation past age 11 years and respiratory insufficiency that is later in onset than in UCMD and results in the need for NIV in the form of BiPAP by the late teens to early 20s. In contrast to individuals with Bethlem muscular dystrophy, those with intermediate COL6-RD typically do not achieve the ability to run, jump, or climb stairs without use of a railing. [from GeneReviews]
Central hypoventilation syndrome, congenital, 1, with or without Hirschsprung disease
Congenital central hypoventilation syndrome (CCHS) represents the extreme manifestation of autonomic nervous system dysregulation (ANSD) with the hallmark of disordered respiratory control. The age of initial recognition of CCHS ranges from neonatal onset (i.e., in the first 30 days of life) to (less commonly) later onset (from 1 month to adulthood). Neonatal-onset CCHS is characterized by apparent hypoventilation with monotonous respiratory rates and shallow breathing either during sleep only or while awake as well as asleep; ANSD including decreased heart rate beat-to-beat variability and sinus pauses; altered temperature regulation; and altered pupillary response to light. Some children have altered development of neural crest-derived structures (i.e., Hirschsprung disease, altered esophageal motility/dysphagia, and severe constipation even in the absence of Hirschsprung disease) and/or tumors of neural crest origin (neuroblastoma, ganglioneuroma, and ganglioneuroblastoma). Neurocognitive delay is variable, and possibly influenced by cyanotic breath holding, prolonged sinus pauses, need for 24-hour/day artificial ventilation, and seizures. Later-onset CCHS is characterized by alveolar hypoventilation during sleep and attenuated manifestations of ANSD. [from GeneReviews]
Paragangliomas 3
Primary erythromelalgia
SCN9A neuropathic pain syndromes (SCN9A-NPS) comprise SCN9A erythromelalgia (EM), SCN9A paroxysmal extreme pain disorder (PEPD), and SCN9A small fiber neuropathy (SFN). SCN9A-EM is characterized by recurrent episodes of bilateral intense, burning pain, and redness, warmth, and occasionally swelling. While the feet are more commonly affected than the hands, in severely affected individuals the legs, arms, face, and/or ears may be involved. SCN9A-PEPD is characterized by neonatal or infantile onset of autonomic manifestations that can include skin flushing, harlequin (patchy or asymmetric) color change, tonic non-epileptic attacks (stiffening), and syncope with bradycardia. Later manifestations are episodes of excruciating deep burning rectal, ocular, or submandibular pain accompanied by flushing (erythematous skin changes). SCN9A-SFN is characterized by adult-onset neuropathic pain in a stocking and glove distribution, often with a burning quality; autonomic manifestations such as dry eyes, mouth, orthostatic dizziness, palpitations, bowel or bladder disturbances; and preservation of large nerve fiber functions (normal strength, tendon reflexes, and vibration sense). [from GeneReviews]
Langer-Giedion syndrome
Trichorhinophalangeal syndrome (TRPS) comprises TRPS I (caused by a heterozygous pathogenic variant in TRPS1) and TRPS II (caused by contiguous gene deletion of TRPS1, RAD21, and EXT1). Both types of TRPS are characterized by distinctive facial features; ectodermal features (fine, sparse, depigmented, and slow growing hair; dystrophic nails; and small breasts); and skeletal findings (short stature; short feet; brachydactyly with ulnar or radial deviation of the fingers; and early, marked hip dysplasia). TRPS II is characterized by multiple osteochondromas (typically first observed clinically on the scapulae and around the elbows and knees between ages 1 month and 6 years) and an increased risk of mild-to-moderate intellectual disability. [from GeneReviews]
Autosomal recessive distal spinal muscular atrophy 1
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an inherited condition that causes muscle weakness and respiratory failure typically beginning in infancy. Early features of this condition are difficult and noisy breathing, especially when inhaling; a weak cry; problems feeding; and recurrent episodes of pneumonia. Typically between the ages of 6 weeks and 6 months, infants with this condition will experience a sudden inability to breathe due to paralysis of the muscle that separates the abdomen from the chest cavity (the diaphragm). Normally, the diaphragm contracts and moves downward during inhalation to allow the lungs to expand. With diaphragm paralysis, affected individuals require life-long support with a machine to help them breathe (mechanical ventilation). Rarely, children with SMARD1 develop signs or symptoms of the disorder later in childhood.Soon after respiratory failure occurs, individuals with SMARD1 develop muscle weakness in their distal muscles. These are the muscles farther from the center of the body, such as muscles in the hands and feet. The weakness soon spreads to all muscles; however, within 2 years, the muscle weakness typically stops getting worse. Some individuals may retain a low level of muscle function, while others lose all ability to move their muscles. Muscle weakness severely impairs motor development, such as sitting, standing, and walking. Some affected children develop an abnormal side-to-side and back-to-front curvature of the spine (scoliosis and kyphosis, often called kyphoscoliosis when they occur together). After approximately the first year of life, individuals with SMARD1 may lose their deep tendon reflexes, such as the reflex being tested when a doctor taps the knee with a hammer.Other features of SMARD1 can include reduced pain sensitivity, excessive sweating (hyperhidrosis), loss of bladder and bowel control, and an irregular heartbeat (arrhythmia). [from MedlinePlus Genetics]
Deficiency of aromatic-L-amino-acid decarboxylase
Aromatic L-amino acid decarboxylase deficiency (AADCD) is an autosomal recessive inborn error in neurotransmitter metabolism that leads to combined serotonin and catecholamine deficiency (Abeling et al., 2000). The disorder is clinically characterized by vegetative symptoms, oculogyric crises, dystonia, and severe neurologic dysfunction, usually beginning in infancy or childhood (summary by Brun et al., 2010). [from OMIM]
Noonan syndrome 7
Noonan syndrome (NS) is characterized by characteristic facies, short stature, congenital heart defect, and developmental delay of variable degree. Other findings can include broad or webbed neck, unusual chest shape with superior pectus carinatum and inferior pectus excavatum, cryptorchidism, varied coagulation defects, lymphatic dysplasias, and ocular abnormalities. Although birth length is usually normal, final adult height approaches the lower limit of normal. Congenital heart disease occurs in 50%-80% of individuals. Pulmonary valve stenosis, often with dysplasia, is the most common heart defect and is found in 20%-50% of individuals. Hypertrophic cardiomyopathy, found in 20%-30% of individuals, may be present at birth or develop in infancy or childhood. Other structural defects include atrial and ventricular septal defects, branch pulmonary artery stenosis, and tetralogy of Fallot. Up to one fourth of affected individuals have mild intellectual disability, and language impairments in general are more common in NS than in the general population. [from GeneReviews]
Fatal familial insomnia
Genetic prion disease generally manifests with cognitive difficulties, ataxia, and myoclonus (abrupt jerking movements of muscle groups and/or entire limbs). The order of appearance and/or predominance of these features and other associated neurologic and psychiatric findings vary. The three major phenotypes of genetic prion disease are genetic Creutzfeldt-Jakob disease (gCJD), fatal familial insomnia (FFI), and Gerstmann-Sträussler-Scheinker (GSS) syndrome. Although these phenotypes display overlapping clinical and pathologic features, recognition of these phenotypes can be useful when providing affected individuals and their families with information about the expected clinical course. The age at onset typically ranges from 50 to 60 years. The disease course ranges from a few months in gCJD and FFI to a few (up to 4, and in rare cases up to 10) years in GSS syndrome. [from GeneReviews]
Cardiofaciocutaneous syndrome 4
Cardiofaciocutaneous (CFC) syndrome is characterized by cardiac abnormalities (pulmonic stenosis and other valve dysplasias, septal defects, hypertrophic cardiomyopathy, rhythm disturbances), distinctive craniofacial appearance, and cutaneous abnormalities (including xerosis, hyperkeratosis, ichthyosis, keratosis pilaris, ulerythema ophryogenes, eczema, pigmented moles, hemangiomas, and palmoplantar hyperkeratosis). The hair is typically sparse, curly, fine or thick, woolly or brittle; eyelashes and eyebrows may be absent or sparse. Nails may be dystrophic or fast growing. Some form of neurologic and/or cognitive delay (ranging from mild to severe) is seen in all affected individuals. Neoplasia, mostly acute lymphoblastic leukemia, has been reported in some individuals. [from GeneReviews]
Cardiofaciocutaneous syndrome 3
Cardio-facio-cutaneous syndrome
Cold-induced sweating syndrome 1
Cold-induced sweating syndrome (CISS) and its infantile presentation, Crisponi syndrome(CS) is characterized by dysmorphic features (distinctive facies, lower facial weakness, flexion deformity at the elbows, camptodactyly with fisted hands, misshapen feet, and overriding toes); intermittent contracture of facial and oropharyngeal muscles when crying or being handled with puckering of lips and drooling of foamy saliva often associated with laryngospasm and respiratory distress; excessive startling and opisthotonus-like posturing with unexpected tactile or auditory stimuli; poor suck reflex and severely impaired swallowing; and a scaly erythematous rash. During the first decade of life, children with CISS/CS develop profuse sweating of the face, arms, and chest with ambient temperatures below 18º to 22º C, and with other stimuli including nervousness or ingestion of sweets. Affected individuals sweat very little in hot environments and may feel overheated. Progressive thoracolumbar kyphoscoliosis occurs, requiring intervention in the second decade. [from GeneReviews]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on