U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 15

1.

Classic homocystinuria

Homocystinuria caused by cystathionine ß-synthase (CBS) deficiency is characterized by involvement of the eye (ectopia lentis and/or severe myopia), skeletal system (excessive height, long limbs, scolioisis, and pectus excavatum), vascular system (thromboembolism), and CNS (developmental delay/intellectual disability). All four ? or only one ? of the systems can be involved; expressivity is variable for all of the clinical signs. It is not unusual for a previously asymptomatic individual to present in adult years with only a thromboembolic event that is often cerebrovascular. Two phenotypic variants are recognized, B6-responsive homocystinuria and B6-non-responsive homocystinuria. B6-responsive homocystinuria is usually milder than the non-responsive variant. Thromboembolism is the major cause of early death and morbidity. IQ in individuals with untreated homocystinuria ranges widely, from 10 to 138. In B6-responsive individuals the mean IQ is 79 versus 57 for those who are B6-non-responsive. Other features that may occur include: seizures, psychiatric problems, extrapyramidal signs (e.g., dystonia), hypopigmentation of the skin and hair, malar flush, livedo reticularis, and pancreatitis. [from GeneReviews]

MedGen UID:
199606
Concept ID:
C0751202
Disease or Syndrome
2.

Cobalamin C disease

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
341256
Concept ID:
C1848561
Disease or Syndrome
3.

Methylmalonic aciduria and homocystinuria type cblD

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
341253
Concept ID:
C1848552
Disease or Syndrome
4.

Homocystinuria due to methylene tetrahydrofolate reductase deficiency

Methylenetetrahydrofolate reductase deficiency is a common inborn error of folate metabolism. The phenotypic spectrum ranges from severe neurologic deterioration and early death to asymptomatic adults. In the classic form, both thermostable and thermolabile enzyme variants have been identified (Rosenblatt et al., 1992). [from OMIM]

MedGen UID:
383829
Concept ID:
C1856058
Disease or Syndrome
5.

Methylmalonic aciduria and homocystinuria type cblF

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
336373
Concept ID:
C1848578
Disease or Syndrome
6.

Methylcobalamin deficiency type cblG

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
344426
Concept ID:
C1855128
Disease or Syndrome
7.

Transcobalamin II deficiency

Transcobalamin II deficiency (TCN2D) is an autosomal recessive disorder with onset in early infancy characterized by failure to thrive, megaloblastic anemia, and pancytopenia. Other features include methylmalonic aciduria, recurrent infections, and vomiting and diarrhea. Treatment with cobalamin results in clinical improvement, but the untreated disorder may result in mental retardation and neurologic abnormalities (summary by Haberle et al., 2009). Hall (1981) gave a clinically oriented review of congenital defects of vitamin B12 transport, and Frater-Schroder (1983) gave a genetically oriented review. [from OMIM]

MedGen UID:
137976
Concept ID:
C0342701
Disease or Syndrome
8.

Methylcobalamin deficiency type cblE

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
344640
Concept ID:
C1856057
Disease or Syndrome
9.

Methylmalonic acidemia with homocystinuria, type cblX

Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]

MedGen UID:
167111
Concept ID:
C0796208
Disease or Syndrome
10.

Methylmalonic acidemia due to methylmalonyl-CoA epimerase deficiency

For this GeneReview, the term "isolated methylmalonic acidemia" refers to a group of inborn errors of metabolism associated with elevated methylmalonic acid (MMA) concentration in the blood and urine that result from the failure to isomerize (convert) methylmalonyl-coenzyme A (CoA) into succinyl-CoA during propionyl-CoA metabolism in the mitochondrial matrix, without hyperhomocysteinemia or homocystinuria, hypomethioninemia, or variations in other metabolites, such as malonic acid. Isolated MMA is caused by complete or partial deficiency of the enzyme methylmalonyl-CoA mutase (mut0 enzymatic subtype or mut– enzymatic subtype, respectively), a defect in the transport or synthesis of its cofactor, 5-deoxy-adenosyl-cobalamin (cblA, cblB, or cblD-MMA), or deficiency of the enzyme methylmalonyl-CoA epimerase. Prior to the advent of newborn screening, common phenotypes included: Infantile/non-B12-responsive form (mut0 enzymatic subtype, cblB), the most common phenotype, associated with infantile-onset lethargy, tachypnea, hypothermia, vomiting, and dehydration on initiation of protein-containing feeds. Without appropriate treatment, the infantile/non-B12-responsive phenotype could rapidly progress to coma due to hyperammonemic encephalopathy. Partially deficient or B12-responsive phenotypes (mut– enzymatic subtype, cblA, cblB [rare], cblD-MMA), in which symptoms occur in the first few months or years of life and are characterized by feeding problems, failure to thrive, hypotonia, and developmental delay marked by episodes of metabolic decompensation. Methylmalonyl-CoA epimerase deficiency, in which findings range from complete absence of symptoms to severe metabolic acidosis. Affected individuals can also develop ataxia, dysarthria, hypotonia, mild spastic paraparesis, and seizures. In those individuals diagnosed by newborn screening and treated from an early age, there appears to be decreased early mortality, less severe symptoms at diagnosis, favorable short-term neurodevelopmental outcome, and lower incidence of movement disorders and irreversible cerebral damage. However, secondary complications may still occur and can include intellectual disability, tubulointerstitial nephritis with progressive impairment of renal function, "metabolic stroke" (bilateral lacunar infarction of the basal ganglia during acute metabolic decompensation), pancreatitis, growth failure, functional immune impairment, bone marrow failure, optic nerve atrophy, arrhythmias and/or cardiomyopathy (dilated or hypertrophic), liver steatosis/fibrosis/cancer, and renal cancer. [from GeneReviews]

MedGen UID:
344419
Concept ID:
C1855100
Disease or Syndrome
11.

Methylmalonic acidemia with homocystinuria, type cblJ

Combined methylmalonic aciduria (MMA) and homocystinuria is a genetically heterogeneous metabolic disorder of cobalamin (cbl; vitamin B12) metabolism, which is essential for hematologic and neurologic function. Biochemically, the defect causes decreased levels of the coenzymes adenosylcobalamin (AdoCbl) and methylcobalamin (MeCbl), which results in decreased activity of the respective enzymes methylmalonyl-CoA mutase (MUT; 609058) and methyltetrahydrofolate:homocysteine methyltransferase, also known as methionine synthase (MTR; 156570). The cblJ type is phenotypically and biochemically similar to the cblF type (MAHCF; 277380) (summary by Coelho et al., 2012). [from OMIM]

MedGen UID:
766829
Concept ID:
C3553915
Disease or Syndrome
12.

Methylmalonic acidemia due to transcobalamin receptor defect

A rare metabolite absorption and transport disorder with characteristics of moderate increase of methylmalonic acid (MMA) in the blood and urine due to decreased cellular uptake of cobalamin resulting from decreased transcobalamin receptor function. Patients are usually asymptomatic however; screening reveals increased C3-acylcarnitine and MMA in plasma. Serum homocysteine levels may vary from normal to moderately elevated and retinal vascular occlusive disease, resulting in severe visual loss, has been reported. Caused by mutation in the gene encoding the transcobalamin receptor (CD320). [from SNOMEDCT_US]

MedGen UID:
1670056
Concept ID:
C4749905
Disease or Syndrome
13.

Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinemia

Combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinemia is an inborn error of folate metabolism due to deficiency of methylenetetrahydrofolate dehydrogenase-1. Manifestations may include hemolytic uremic syndrome, macrocytosis, epilepsy, hearing loss, retinopathy, mild mental retardation, lymphopenia involving all subsets, and low T-cell receptor excision circles. Folinic acid supplementation is an effective treatment (summary by Ramakrishnan et al., 2016). [from OMIM]

MedGen UID:
1615364
Concept ID:
C4540434
Disease or Syndrome
14.

Megaloblastic anemia, folate-responsive

Folate-responsive megaloblastic anemia (MEGAF) is an autosomal recessive metabolic disorder characterized by megaloblastic anemia resulting from decreased folate transport into erythrocytes. Although serum levels of folate are normal, there is folate deficiency in tissues, including erythrocytes and possibly nerve cells. Serum homocysteine levels are increased and vitamin B12 levels may be decreased. Treatment with oral folate corrects the anemia and normalizes homocysteine (summary by Svaton et al., 2020) [from OMIM]

MedGen UID:
440842
Concept ID:
C2749656
Disease or Syndrome; Finding
15.

Hyperhomocystinemia

An increased concentration of homocystine in the blood. [from HPO]

MedGen UID:
812677
Concept ID:
C3806347
Finding
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity