U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 7

1.

Citrullinemia type I

Citrullinemia type I (CTLN1) presents as a spectrum that includes a neonatal acute form (the "classic" form), a milder late-onset form (the "non-classic" form), a form in which women have onset of symptoms at pregnancy or post partum, and a form without symptoms or hyperammonemia. Distinction between the forms is based primarily on clinical findings, although emerging evidence suggests that measurement of residual argininosuccinate synthase enzyme activity may help to predict those who are likely to have a severe phenotype and those who are likely to have an attenuated phenotype. Infants with the acute neonatal form appear normal at birth. Shortly thereafter, they develop hyperammonemia and become progressively lethargic, feed poorly, often vomit, and may develop signs of increased intracranial pressure (ICP). Without prompt intervention, hyperammonemia and the accumulation of other toxic metabolites (e.g., glutamine) result in increased ICP, increased neuromuscular tone, spasticity, ankle clonus, seizures, loss of consciousness, and death. Children with the severe form who are treated promptly may survive for an indeterminate period of time, but usually with significant neurologic deficits. Even with chronic protein restriction and scavenger therapy, long-term complications such as liver failure and other (rarely reported) organ system manifestations are possible. The late-onset form may be milder than that seen in the acute neonatal form, but commences later in life for reasons that are not completely understood. The episodes of hyperammonemia are similar to those seen in the acute neonatal form, but the initial neurologic findings may be more subtle because of the older age of the affected individuals. Women with onset of severe symptoms including acute hepatic decompensation during pregnancy or in the postpartum period have been reported. Furthermore, previously asymptomatic and non-pregnant individuals have been described who remained asymptomatic up to at least age ten years, with the possibility that they could remain asymptomatic lifelong. [from GeneReviews]

MedGen UID:
1648491
Concept ID:
C4721769
Disease or Syndrome
2.

Argininosuccinate lyase deficiency

Deficiency of argininosuccinate lyase (ASL), the enzyme that cleaves argininosuccinic acid to produce arginine and fumarate in the fourth step of the urea cycle, may present as a severe neonatal-onset form or a late-onset form: The severe neonatal-onset form is characterized by hyperammonemia within the first few days after birth that can manifest as increasing lethargy, somnolence, refusal to feed, vomiting, tachypnea, and respiratory alkalosis. Absence of treatment leads to worsening lethargy, seizures, coma, and even death. In contrast, the manifestations of late-onset form range from episodic hyperammonemia triggered by acute infection or stress to cognitive impairment, behavioral abnormalities, and/or learning disabilities in the absence of any documented episodes of hyperammonemia. Manifestations of ASL deficiency that appear to be unrelated to the severity or duration of hyperammonemic episodes: Neurocognitive deficiencies (attention-deficit/hyperactivity disorder, developmental delay, seizures, and learning disability). Liver disease (hepatitis, cirrhosis). Trichorrhexis nodosa (coarse brittle hair that breaks easily). Systemic hypertension. [from GeneReviews]

MedGen UID:
78687
Concept ID:
C0268547
Disease or Syndrome
3.

Congenital hyperammonemia, type I

Carbamoyl phosphate synthetase I deficiency is an autosomal recessive inborn error of metabolism of the urea cycle which causes hyperammonemia. There are 2 main forms: a lethal neonatal type and a less severe, delayed-onset type (summary by Klaus et al., 2009). Urea cycle disorders are characterized by the triad of hyperammonemia, encephalopathy, and respiratory alkalosis. Five disorders involving different defects in the biosynthesis of the enzymes of the urea cycle have been described: ornithine transcarbamylase deficiency (311250), carbamyl phosphate synthetase deficiency, argininosuccinate synthetase deficiency, or citrullinemia (215700), argininosuccinate lyase deficiency (207900), and arginase deficiency (207800). [from OMIM]

MedGen UID:
907954
Concept ID:
C4082171
Disease or Syndrome
4.

ALDH18A1-related de Barsy syndrome

De Barsy syndrome, or autosomal recessive cutis laxa type III (ARCL3), is characterized by cutis laxa, a progeria-like appearance, and ophthalmologic abnormalities (summary by Kivuva et al., 2008). For a phenotypic description and a discussion of genetic heterogeneity of autosomal recessive cutis laxa, see 219100. Genetic Heterogeneity of de Barsy Syndrome Also see ARCL3B (614438), caused by mutation in the PYCR1 gene (179035) on chromosome 17q25. [from OMIM]

MedGen UID:
1720006
Concept ID:
C5234852
Disease or Syndrome
5.

Hyperammonemic encephalopathy due to carbonic anhydrase VA deficiency

Most children with carbonic anhydrase VA (CA-VA) deficiency reported to date have presented between day 2 of life and early childhood (up to age 20 months) with hyperammonemic encephalopathy (i.e., lethargy, feeding intolerance, weight loss, tachypnea, seizures, and coma). Given that fewer than 20 affected individuals have been reported to date, the ranges of initial presentations and long-term prognoses are not completely understood. As of 2021 the oldest known affected individual is an adolescent. Almost all affected individuals reported to date have shown normal psychomotor development and no further episodes of metabolic crisis; however, a few have shown mild learning difficulties or delayed motor skills. [from GeneReviews]

MedGen UID:
816734
Concept ID:
C3810404
Disease or Syndrome
6.

Mitochondrial complex V (ATP synthase) deficiency, nuclear type 4A

Mitochondrial complex V deficiency nuclear type 4A (MC5DN4A) is an autosomal dominant metabolic disorder characterized by poor feeding and failure to thrive in early infancy. Laboratory studies show increased serum lactate, alanine, and ammonia, suggesting mitochondrial dysfunction. Some affected individuals show spontaneous resolution of these symptoms in early childhood and have subsequent normal growth and development, whereas others show developmental delay with impaired intellectual development and movement abnormalities, including dystonia, ataxia, or spasticity; these neurologic deficits are persistent (Lines et al., 2021, Zech et al., 2022). For a discussion of genetic heterogeneity of mitochondrial complex V deficiency, nuclear types, see MC5DN1 (604273). [from OMIM]

MedGen UID:
1841116
Concept ID:
C5830480
Disease or Syndrome
7.

Hypoargininemia

A decreased concentration of arginine in the blood. [from HPO]

MedGen UID:
892673
Concept ID:
C4025095
Finding
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity