U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 34

1.

Hemochromatosis type 1

HFE hemochromatosis is characterized by inappropriately high absorption of iron by the small intestinal mucosa. The phenotypic spectrum of HFE hemochromatosis includes: Persons with clinical HFE hemochromatosis, in whom manifestations of end-organ damage secondary to iron overload are present; Individuals with biochemical HFE hemochromatosis, in whom transferrin-iron saturation is increased and the only evidence of iron overload is increased serum ferritin concentration; and Non-expressing p.Cys282Tyr homozygotes, in whom neither clinical manifestations of HFE hemochromatosis nor iron overload are present. Clinical HFE hemochromatosis is characterized by excessive storage of iron in the liver, skin, pancreas, heart, joints, and anterior pituitary gland. In untreated individuals, early symptoms include: abdominal pain, weakness, lethargy, weight loss, arthralgias, diabetes mellitus; and increased risk of cirrhosis when the serum ferritin is higher than 1,000 ng/mL. Other findings may include progressive increase in skin pigmentation, congestive heart failure, and/or arrhythmias, arthritis, and hypogonadism. Clinical HFE hemochromatosis is more common in men than women. [from GeneReviews]

MedGen UID:
854011
Concept ID:
C3469186
Disease or Syndrome
2.

Deficiency of ferroxidase

Aceruloplasminemia is characterized by iron accumulation in the brain and viscera. The clinical triad of retinal degeneration, diabetes mellitus (DM), and neurologic disease is seen in individuals ranging from age 30 years to older than 70 years. The neurologic findings of movement disorder (blepharospasm, grimacing, facial and neck dystonia, tremors, chorea) and ataxia (gait ataxia, dysarthria) correspond to regions of iron deposition in the brain. Individuals with aceruloplasminemia often present with anemia prior to onset of DM or obvious neurologic problems. Cognitive dysfunction including apathy and forgetfulness occurs in more than half of individuals with this condition. [from GeneReviews]

MedGen UID:
168057
Concept ID:
C0878682
Disease or Syndrome
3.

Hemochromatosis type 2A

Juvenile hemochromatosis is characterized by onset of severe iron overload occurring typically in the first to third decades of life. Males and females are equally affected. Prominent clinical features include hypogonadotropic hypogonadism, cardiomyopathy, glucose intolerance and diabetes, arthropathy, and liver fibrosis or cirrhosis. Hepatocellular cancer has been reported occasionally. The main cause of death is cardiac disease. If juvenile hemochromatosis is detected early enough and if blood is removed regularly through the process of phlebotomy to achieve iron depletion, morbidity and mortality are greatly reduced. [from GeneReviews]

MedGen UID:
356321
Concept ID:
C1865614
Disease or Syndrome
4.

Lysinuric protein intolerance

Lysinuric protein intolerance (LPI) typically presents after an infant is weaned from breast milk or formula; variable findings include recurrent vomiting and episodes of diarrhea, episodes of stupor and coma after a protein-rich meal, poor feeding, aversion to protein-rich food, failure to thrive, hepatosplenomegaly, and muscular hypotonia. Over time, findings include: poor growth, osteoporosis, involvement of the lungs (progressive interstitial changes, pulmonary alveolar proteinosis) and of the kidneys (progressive glomerular and proximal tubular disease), hematologic abnormalities (normochromic or hypochromic anemia, leukopenia, thrombocytopenia, erythroblastophagocytosis in the bone marrow aspirate), and a clinical presentation resembling the hemophagocytic lymphohistiocytosis/macrophagic activation syndrome. Hypercholesterolemia, hypertriglyceridemia, and acute pancreatitis can also be seen. [from GeneReviews]

MedGen UID:
75704
Concept ID:
C0268647
Disease or Syndrome
5.

X-linked lymphoproliferative disease due to XIAP deficiency

X-linked lymphoproliferative disease (XLP) has two recognizable subtypes, XLP1 and XLP2. XLP1 is characterized predominantly by one of three commonly recognized phenotypes: Inappropriate immune response to Epstein-Barr virus (EBV) infection leading to hemophagocytic lymphohistiocytosis (HLH) or severe mononucleosis. Dysgammaglobulinemia. Lymphoproliferative disease (malignant lymphoma). XLP2 is most often characterized by HLH (often associated with EBV), dysgammaglobulinemia, and inflammatory bowel disease. HLH resulting from EBV infection is associated with an unregulated and exaggerated immune response with widespread proliferation of cytotoxic T cells, EBV-infected B cells, and macrophages. Dysgammaglobulinemia is typically hypogammaglobulinemia of one or more immunoglobulin subclasses. The malignant lymphomas are typically B-cell lymphomas, non-Hodgkin type, often extranodal, and in particular involving the intestine. [from GeneReviews]

MedGen UID:
336848
Concept ID:
C1845076
Disease or Syndrome
6.

Hemochromatosis type 2B

Juvenile hemochromatosis is characterized by onset of severe iron overload occurring typically in the first to third decades of life. Males and females are equally affected. Prominent clinical features include hypogonadotropic hypogonadism, cardiomyopathy, glucose intolerance and diabetes, arthropathy, and liver fibrosis or cirrhosis. Hepatocellular cancer has been reported occasionally. The main cause of death is cardiac disease. If juvenile hemochromatosis is detected early enough and if blood is removed regularly through the process of phlebotomy to achieve iron depletion, morbidity and mortality are greatly reduced. [from GeneReviews]

MedGen UID:
356040
Concept ID:
C1865616
Disease or Syndrome
7.

Hemochromatosis type 3

TFR2-related hereditary hemochromatosis (TFR2-HHC) is characterized by increased intestinal iron absorption resulting in iron accumulation in the liver, heart, pancreas, and endocrine organs. Age of onset is earlier than in HFE-HHC. The majority of individuals present with signs and symptoms of iron overload in the third decade (e.g., weakness, fatigue, abdominal pain, hepatomegaly, arthritis, arthralgia, progressive increase in skin pigmentation). Others present as young adults with nonspecific symptoms and abnormal serum iron studies or as adults with abnormal serum iron studies and signs of organ involvement including cirrhosis, diabetes mellitus, and arthropathy. [from GeneReviews]

MedGen UID:
388114
Concept ID:
C1858664
Disease or Syndrome
8.

Dehydrated hereditary stomatocytosis with or without pseudohyperkalemia and/or perinatal edema

Dehydrated hereditary stomatocytosis (DHS), also known as hereditary xerocytosis, is an autosomal dominant hemolytic anemia characterized by primary erythrocyte dehydration. DHS erythrocytes exhibit decreased total cation and potassium content that are not accompanied by a proportional net gain of sodium and water. DHS patients typically exhibit mild to moderate compensated hemolytic anemia, with an increased erythrocyte mean corpuscular hemoglobin concentration and a decreased osmotic fragility, both of which reflect cellular dehydration (summary by Zarychanski et al., 2012). Patients may also show perinatal edema and pseudohyperkalemia due to loss of K+ from red cells stored at room temperature. A minor proportion of red cells appear as stomatocytes on blood films. Complications such as splenomegaly and cholelithiasis, resulting from increased red cell trapping in the spleen and elevated bilirubin levels, respectively, may occur. The course of DHS is frequently associated with iron overload, which may lead to hepatosiderosis (summary by Albuisson et al., 2013). Dehydrated red blood cells, including those from hereditary xerocytosis patients, show delayed infection rates to Plasmodium in vitro, suggesting a potential protective mechanism against malaria (Tiffert et al., 2005). A polymorphism in PIEZO1 that is enriched in populations of African descent and results in xerocytosis conferred resistance to Plasmodium infection in vitro (see 611184.0016). The 'leaky red blood cells' in familial pseudohyperkalemia show a temperature-dependent loss of potassium when stored at room temperature, manifesting as apparent hyperkalemia. The red blood cells show a reduced life span in vivo, but there is no frank hemolysis. Studies of cation content and transport show a marginal increase in permeability at 37 degrees C and a degree of cellular dehydration, qualitatively similar to the changes seen in dehydrated hereditary stomatocytosis. Physiologic studies show that the passive leak of potassium has an abnormal temperature dependence, such that the leak is less sensitive to temperature than that in normal cells (summary by Iolascon et al., 1999). Carella et al. (2004) noted that 3 clinical forms of pseudohyperkalemia unassociated with hematologic manifestations, based predominantly on the leak-temperature dependence curve, had been reported: (1) pseudohyperkalemia Edinburgh, in which the curve has a shallow slope; (2) pseudohyperkalemia Chiswick or Falkirk (see 609153), in which the curve is shouldered; and (3) pseudohyperkalemia Cardiff (see 609153), in which the temperature dependence of the leak shows a 'U-shaped' profile with a minimum at 23 degrees C. Gore et al. (2004) stated that potassium-flux temperature profiles are consistent both from year to year in an individual as well as consistent within affected members of a pedigree. Genetic Heterogeneity of Hereditary Stomatocytosis Dehydrated hereditary stomatocytosis-2 (DHS2; 616689) is caused by mutation in the KCNN4 gene (602754) on chromosome 19q13. Another form of stomatocytosis, involving familial pseudohyperkalemia with minimal hematologic abnormalities (PSHK2; 609153), is caused by mutation in the ABCB6 gene (605452) on chromosome 2q35. Cryohydrocytosis (CHC; 185020) is caused by mutation in the SLC4A1 gene (109270) on chromosome 17q21, and stomatin-deficient cryohydrocytosis with neurologic defects (SDCHCN; 608885) is caused by mutation in the SLC2A1 gene (138140) on chromosome 1p34. An overhydrated form of hereditary stomatocytosis (OHST; 185000) is caused by mutation in the RHAG gene (180297) on chromosome 6p12. See 137280 for a discussion of the association of familial stomatocytosis and hypertrophic gastritis in the dog, an autosomal recessive syndrome. Reviews Delaunay (2004) reviewed genetic disorders of red cell membrane permeability to monovalent cations, noting 'inevitable' overlap between entities based on clinical phenotype. Bruce (2009) provided a review of hereditary stomatocytosis and cation-leaky red cells, stating that consistent features include hemolytic anemia, a monovalent cation leak, and changes in red cell morphology that appear to follow a continuum, from normal discocyte to stomatocyte to echinocyte in DHS, and from discocyte to stomatocyte to spherocyte to fragmentation in OHST. Bruce (2009) suggested that the underlying pathologic mechanism might involve misfolded mutant proteins that escape the quality control system of the cell and reach the red cell membrane, where they disrupt the red cell membrane structure and cause a cation leak that alters the hydration of the red cell, thereby changing the morphology and viability of the cell. King and Zanella (2013) provided an overview of 2 groups of nonimmune hereditary red cell membrane disorders caused by defects in membrane proteins located in distinct layers of the red cell membrane: red cell cytoskeleton disorders, including hereditary spherocytosis (see 182900), hereditary elliptocytosis (see 611804), and hereditary pyropoikilocytosis (266140); and cation permeability disorders of the red cell membrane, or hereditary stomatocytoses, including DHS, OHST, CHC, and PSHK. The authors noted that because there is no specific screening test for the hereditary stomatocytoses, a preliminary diagnosis is based on the presence of a compensated hemolytic anemia, macrocytosis, and a temperature- or time-dependent pseudohyperkalemia in some patients. King et al. (2015) reported the International Council for Standardization in Haematology (ICSH) guidelines for laboratory diagnosis of nonimmune hereditary red cell membrane disorders. [from OMIM]

MedGen UID:
1638271
Concept ID:
C4551512
Disease or Syndrome
9.

Familial hemophagocytic lymphohistiocytosis 5

Familial hemophagocytic lymphohistiocytosis-5 with or without microvillus inclusion disease (FHL5) is an autosomal recessive hyperinflammatory disorder characterized clinically by fever, hepatosplenomegaly, pancytopenia, coagulation abnormalities, and other laboratory findings. Some patients have neurologic symptoms due to inflammatory CNS disease. There is uncontrolled and ineffective proliferation and activation of T lymphocytes, NK cells, and macrophages that infiltrate multiple organs, including liver, spleen, lymph nodes, and the CNS. The phenotype is variable: some patients may present in early infancy with severe diarrhea, prior to the onset of typical FHL features, whereas others present later in childhood and have a more protracted course without diarrhea. The early-onset diarrhea is due to enteropathy reminiscent of microvillus inclusion disease (see MVID, 251850). The enteropathy, which often necessitates parenteral feeding, may be the most life-threatening issue even after hematopoietic stem cell transplantation (HSCT). More variable features include sensorineural hearing loss and hypogammaglobulinemia. Treatment with immunosuppressive drugs and chemotherapy can ameliorate signs and symptoms of FHL in some patients, but the only curative therapy for FHL is HSCT. HSCT is not curative for enteropathy associated with the disorder, despite hematologic and immunologic reconstitution (summary by Meeths et al., 2010; Pagel et al., 2012; Stepensky et al., 2013). For a phenotypic description and a discussion of genetic heterogeneity of familial hemophagocytic lymphohistiocytosis (FHL, HLH), see 267700. [from OMIM]

MedGen UID:
416514
Concept ID:
C2751293
Disease or Syndrome
10.

Familial hemophagocytic lymphohistiocytosis 2

Familial hemophagocytic lymphohistiocytosis-2 (FHL2) is an autosomal recessive disorder of immune dysregulation with onset in infancy or early childhood. It is characterized clinically by fever, edema, hepatosplenomegaly, and liver dysfunction. Neurologic impairment, seizures, and ataxia are frequent. Laboratory studies show pancytopenia, coagulation abnormalities, hypofibrinogenemia, and hypertriglyceridemia. There is increased production of cytokines, such as gamma-interferon (IFNG; 147570) and TNF-alpha (191160), by hyperactivation and proliferation of T cells and macrophages. Activity of cytotoxic T cells and NK cells is reduced, consistent with a defect in cellular cytotoxicity. Bone marrow, lymph nodes, spleen, and liver show features of hemophagocytosis. Chemotherapy and/or immunosuppressant therapy may result in symptomatic remission, but the disorder is fatal without bone marrow transplantation (summary by Dufourcq-Lagelouse et al., 1999, Stepp et al., 1999, and Molleran Lee et al., 2004). For a general phenotypic description and a discussion of genetic heterogeneity of FHL, see 267700. [from OMIM]

MedGen UID:
400366
Concept ID:
C1863727
Disease or Syndrome
11.

Myopathy, lactic acidosis, and sideroblastic anemia 1

Myopathy, lactic acidosis, and sideroblastic anemia (MLASA) is a rare autosomal recessive oxidative phosphorylation disorder specific to skeletal muscle and bone marrow (Bykhovskaya et al., 2004). Genetic Heterogeneity of Myopathy, Lactic Acidosis, and Sideroblastic Anemia MLASA2 (613561) is caused by mutation in the YARS2 gene (610957) on chromosome 12p11. MLASA3 (500011) is caused by heteroplasmic mutation in the mitochondrially-encoded MTATP6 gene (516060). [from OMIM]

MedGen UID:
1634824
Concept ID:
C4551958
Disease or Syndrome
12.

Familial hemophagocytic lymphohistiocytosis type 1

Familial Hemophagocytic lymphohistiocytosis (FHL) is a rare primary immunodeficiency characterized by a macrophage activation syndrome with an onset usually occurring within a few months or less common several years after birth. [from MONDO]

MedGen UID:
1642840
Concept ID:
C4551514
Disease or Syndrome
13.

Hemochromatosis type 4

Hemochromatosis type 4 (HFE4) is a dominantly inherited iron overload disorder with heterogeneous phenotypic manifestations that can be classified into 2 groups. One group is characterized by an early rise in ferritin (see 134790) levels with low to normal transferrin (190000) saturation and iron accumulation predominantly in macrophages. The other group is similar to classical hemochromatosis, with high transferrin saturation and prominent parenchymal iron loading (summary by De Domenico et al., 2005). For general background information and a discussion of genetic heterogeneity of hereditary hemochromatosis, see 235200. [from OMIM]

MedGen UID:
340044
Concept ID:
C1853733
Disease or Syndrome
14.

Familial hemophagocytic lymphohistiocytosis 4

Hemophagocytic lymphohistiocytosis is a hyperinflammatory disorder clinically diagnosed based on the fulfillment of 5 of 8 criteria, including fever, splenomegaly, bicytopenia, hypertriglyceridemia and/or hypofibrinogenemia, hemophagocytosis, low or absent natural killer (NK) cell activity, hyperferritinemia, and high soluble IL2 receptor levels (IL2R; 147730). The disorder typically presents in infancy or early childhood. Persistent remission is rarely achieved with chemo- or immunotherapy; hematopoietic stem cell transplantation is the only cure (summary by Muller et al., 2014). For a phenotypic description and a discussion of genetic heterogeneity of familial hemophagocytic lymphohistiocytosis (FHL), see 267700. [from OMIM]

MedGen UID:
350245
Concept ID:
C1863728
Disease or Syndrome
15.

GRACILE syndrome

GRACILE syndrome is a severe disorder that begins before birth. GRACILE stands for the condition's characteristic features: growth retardation, aminoaciduria, cholestasis, iron overload, lactic acidosis, and early death.

In GRACILE syndrome, growth before birth is slow (intrauterine growth retardation). Affected newborns are smaller than average and have an inability to grow and gain weight at the expected rate (failure to thrive). A characteristic of GRACILE syndrome is excess iron in the liver, which likely begins before birth. Iron levels may begin to improve after birth, although they typically remain elevated. Within the first day of life, infants with GRACILE syndrome have a buildup of a chemical called lactic acid in the body (lactic acidosis). They also have kidney problems that lead to an excess of molecules called amino acids in the urine (aminoaciduria). Babies with GRACILE syndrome have cholestasis, which is a reduced ability to produce and release a digestive fluid called bile. Cholestasis leads to irreversible liver disease (cirrhosis) in the first few months of life.

Because of the severe health problems caused by GRACILE syndrome, infants with this condition do not survive for more than a few months, and about half die within a few days of birth. [from MedlinePlus Genetics]

MedGen UID:
400428
Concept ID:
C1864002
Disease or Syndrome
16.

Hereditary hyperferritinemia with congenital cataracts

Hyperferritinemia-cataract syndrome is a disorder characterized by an excess of an iron storage protein called ferritin in the blood (hyperferritinemia) and tissues of the body. A buildup of this protein begins early in life, leading to clouding of the lenses of the eyes (cataracts). In affected individuals, cataracts usually develop in infancy, rather than after age 60 as typically occurs in the general population. Cataracts that are not removed surgically cause progressive dimming and blurriness of vision because the clouded lenses reduce and distort incoming light.

Although the hyperferritinemia in this disorder does not usually cause any health problems other than cataracts, the elevated ferritin levels in the blood can be mistaken for a sign of certain liver disorders. These conditions result in excess iron in the body and may be treated by blood-drawing. However, individuals with hyperferritinemia-cataract syndrome do not have an excess of iron, and with repeated blood draws will develop reduced iron levels leading to a low number of red blood cells (anemia). Therefore, correct diagnosis of hyperferritinemia-cataract syndrome is important to avoid unnecessary treatments or invasive test procedures such as liver biopsies. [from MedlinePlus Genetics]

MedGen UID:
318812
Concept ID:
C1833213
Disease or Syndrome
17.

Aicardi-Goutieres syndrome 7

Most characteristically, Aicardi-Goutières syndrome (AGS) manifests as an early-onset encephalopathy that usually, but not always, results in severe intellectual and physical disability. A subgroup of infants with AGS present at birth with abnormal neurologic findings, hepatosplenomegaly, elevated liver enzymes, and thrombocytopenia, a picture highly suggestive of congenital infection. Otherwise, most affected infants present at variable times after the first few weeks of life, frequently after a period of apparently normal development. Typically, they demonstrate the subacute onset of a severe encephalopathy characterized by extreme irritability, intermittent sterile pyrexias, loss of skills, and slowing of head growth. Over time, as many as 40% develop chilblain skin lesions on the fingers, toes, and ears. It is becoming apparent that atypical, sometimes milder, cases of AGS exist, and thus the true extent of the phenotype associated with pathogenic variants in the AGS-related genes is not yet known. [from GeneReviews]

MedGen UID:
854829
Concept ID:
C3888244
Disease or Syndrome
18.

Lymphoproliferative syndrome 1

Lymphoproliferative syndrome-1 is an autosomal recessive primary immunodeficiency characterized by onset in early childhood of Epstein-Barr virus (EBV)-associated immune dysregulation, manifest as lymphoma, lymphomatoid granulomatosis, hemophagocytic lymphohistiocytosis, Hodgkin disease, and/or hypogammaglobulinemia. Autoimmune disorders, such as autoimmune hemolytic anemia or renal disease, may also occur. Patients show a high EBV viral load and decreased invariant natural killer T cells. It is unknown whether patients with ITK mutations are intrinsically susceptible to development of lymphoma or dysgammaglobulinemia in the absence of EBV infection (summary by Stepensky et al., 2011; Linka et al., 2012). For a discussion of genetic heterogeneity of lymphoproliferative syndrome, see XLP1 (308240). [from OMIM]

MedGen UID:
765548
Concept ID:
C3552634
Disease or Syndrome
19.

Sideroblastic anemia 3

Sideroblastic anemia-3 is an autosomal recessive hematologic disorder characterized by onset of anemia in adulthood. Affected individuals show signs of systemic iron overload, and iron chelation therapy may be of clinical benefit (summary by Liu et al., 2014). For a discussion of genetic heterogeneity of sideroblastic anemia, see SIDBA1 (300751). [from OMIM]

MedGen UID:
895975
Concept ID:
C4225155
Disease or Syndrome
20.

Sideroblastic anemia 2

MedGen UID:
899109
Concept ID:
C4225425
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...