Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Hb SS disease
Sickle cell disease (SCD) is characterized by intermittent vaso-occlusive events and chronic hemolytic anemia. Vaso-occlusive events result in tissue ischemia leading to acute and chronic pain as well as organ damage that can affect any organ system, including the bones, spleen, liver, brain, lungs, kidneys, and joints. Dactylitis (pain and/or swelling of the hands or feet) is often the earliest manifestation of SCD. In children, the spleen can become engorged with blood cells in a "splenic sequestration." The spleen is particularly vulnerable to infarction and the majority of individuals with SCD who are not on hydroxyurea or transfusion therapy become functionally asplenic in early childhood, increasing their risk for certain types of bacterial infections, primarily encapsulated organisms. Acute chest syndrome (ACS) is a major cause of mortality in SCD. Chronic hemolysis can result in varying degrees of anemia, jaundice, cholelithiasis, and delayed growth and sexual maturation as well as activating pathways that contribute to the pathophysiology directly. Individuals with the highest rates of hemolysis are at higher risk for pulmonary artery hypertension, priapism, and leg ulcers and may be relatively protected from vaso-occlusive pain. [from GeneReviews]
Renal dysplasia, cystic, susceptibility to
Tyrosinemia type I
Untreated tyrosinemia type I usually presents either in young infants with severe liver involvement or later in the first year with liver dysfunction and renal tubular dysfunction associated with growth failure and rickets. Untreated children may have repeated, often unrecognized, neurologic crises lasting one to seven days that can include change in mental status, abdominal pain, peripheral neuropathy, and/or respiratory failure requiring mechanical ventilation. Death in the untreated child usually occurs before age ten years, typically from liver failure, neurologic crisis, or hepatocellular carcinoma. Combined treatment with nitisinone and a low-tyrosine diet has resulted in a greater than 90% survival rate, normal growth, improved liver function, prevention of cirrhosis, correction of renal tubular acidosis, and improvement in secondary rickets. [from GeneReviews]
Fabry disease
Fabry disease is the most common of the lysosomal storage disorders and results from deficient activity of the enzyme alpha-galactosidase A (a-Gal A), leading to progressive lysosomal deposition of globotriaosylceramide and its derivatives in cells throughout the body. The classic form, occurring in males with less than 1% a-Gal A enzyme activity, usually has its onset in childhood or adolescence with periodic crises of severe pain in the extremities (acroparesthesia), the appearance of vascular cutaneous lesions (angiokeratomas), sweating abnormalities (anhidrosis, hypohidrosis, and rarely hyperhidrosis), characteristic corneal and lenticular opacities, and proteinuria. Gradual deterioration of renal function to end-stage renal disease (ESRD) usually occurs in men in the third to fifth decade. In middle age, most males successfully treated for ESRD develop cardiac and/or cerebrovascular disease, a major cause of morbidity and mortality. Heterozygous females typically have milder symptoms at a later age of onset than males. Rarely, females may be relatively asymptomatic throughout a normal life span or may have symptoms as severe as those observed in males with the classic phenotype. In contrast, late-onset forms occur in males with greater than 1% a-Gal A activity. Clinical manifestations include cardiac disease, which usually presents in the sixth to eighth decade with left ventricular hypertrophy, cardiomyopathy, arrhythmia, and proteinuria; renal failure, associated with ESRD but without the skin lesions or pain; or cerebrovascular disease presenting as stroke or transient ischemic attack. [from GeneReviews]
Cobalamin C disease
Disorders of intracellular cobalamin metabolism have a variable phenotype and age of onset that are influenced by the severity and location within the pathway of the defect. The prototype and best understood phenotype is cblC; it is also the most common of these disorders. The age of initial presentation of cblC spans a wide range: In utero with fetal presentation of nonimmune hydrops, cardiomyopathy, and intrauterine growth restriction. Newborns, who can have microcephaly, poor feeding, and encephalopathy. Infants, who can have poor feeding and slow growth, neurologic abnormality, and, rarely, hemolytic uremic syndrome (HUS). Toddlers, who can have poor growth, progressive microcephaly, cytopenias (including megaloblastic anemia), global developmental delay, encephalopathy, and neurologic signs such as hypotonia and seizures. Adolescents and adults, who can have neuropsychiatric symptoms, progressive cognitive decline, thromboembolic complications, and/or subacute combined degeneration of the spinal cord. [from GeneReviews]
Nephropathic cystinosis
Cystinosis comprises three allelic phenotypes: Nephropathic cystinosis in untreated children is characterized by renal Fanconi syndrome, poor growth, hypophosphatemic/calcipenic rickets, impaired glomerular function resulting in complete glomerular failure, and accumulation of cystine in almost all cells, leading to cellular dysfunction with tissue and organ impairment. The typical untreated child has short stature, rickets, and photophobia. Failure to thrive is generally noticed after approximately age six months; signs of renal tubular Fanconi syndrome (polyuria, polydipsia, dehydration, and acidosis) appear as early as age six months; corneal crystals can be present before age one year and are always present after age 16 months. Prior to the use of renal transplantation and cystine-depleting therapy, the life span in nephropathic cystinosis was no longer than ten years. With these interventions, affected individuals can survive at least into the mid-forties or fifties with satisfactory quality of life. Intermediate cystinosis is characterized by all the typical manifestations of nephropathic cystinosis, but onset is at a later age. Renal glomerular failure occurs in all untreated affected individuals, usually between ages 15 and 25 years. The non-nephropathic (ocular) form of cystinosis is characterized clinically only by photophobia resulting from corneal cystine crystal accumulation. [from GeneReviews]
Costello syndrome
While the majority of individuals with Costello syndrome share characteristic findings affecting multiple organ systems, the phenotypic spectrum is wide, ranging from a milder or attenuated phenotype to a severe phenotype with early lethal complications. Costello syndrome is typically characterized by failure to thrive in infancy as a result of severe postnatal feeding difficulties; short stature; developmental delay or intellectual disability; coarse facial features (full lips, large mouth, full nasal tip); curly or sparse, fine hair; loose, soft skin with deep palmar and plantar creases; papillomata of the face and perianal region; diffuse hypotonia and joint laxity with ulnar deviation of the wrists and fingers; tight Achilles tendons; and cardiac involvement including: cardiac hypertrophy (usually typical hypertrophic cardiomyopathy), congenital heart defect (usually valvar pulmonic stenosis), and arrhythmia (usually supraventricular tachycardia, especially chaotic atrial rhythm/multifocal atrial tachycardia or ectopic atrial tachycardia). Relative or absolute macrocephaly is typical, and postnatal cerebellar overgrowth can result in the development of a Chiari I malformation with associated anomalies including hydrocephalus or syringomyelia. Individuals with Costello syndrome have an approximately 15% lifetime risk for malignant tumors including rhabdomyosarcoma and neuroblastoma in young children and transitional cell carcinoma of the bladder in adolescents and young adults. [from GeneReviews]
X-linked Alport syndrome
In Alport syndrome (AS) a spectrum of phenotypes ranging from progressive renal disease with extrarenal abnormalities to isolated hematuria with a non-progressive or very slowly progressive course is observed. Approximately two thirds of AS is X-linked (XLAS); approximately 15% is autosomal recessive (ARAS), and approximately 20% is autosomal dominant (ADAS). In the absence of treatment, renal disease progresses from microscopic hematuria (microhematuria) to proteinuria, progressive renal insufficiency, and end-stage renal disease (ESRD) in all males with XLAS, and in all males and females with ARAS. Progressive sensorineural hearing loss (SNHL) is usually present by late childhood or early adolescence. Ocular findings include anterior lenticonus (which is virtually pathognomonic), maculopathy (whitish or yellowish flecks or granulations in the perimacular region), corneal endothelial vesicles (posterior polymorphous dystrophy), and recurrent corneal erosion. In individuals with ADAS, ESRD is frequently delayed until later adulthood, SNHL is relatively late in onset, and ocular involvement is rare. [from GeneReviews]
Cockayne syndrome type 1
Cockayne syndrome (referred to as CS in this GeneReview) spans a continuous phenotypic spectrum that includes: CS type I, the "classic" or "moderate" form; CS type II, a more severe form with symptoms present at birth; this form overlaps with cerebrooculofacioskeletal (COFS) syndrome; CS type III, a milder and later-onset form; COFS syndrome, a fetal form of CS. CS type I is characterized by normal prenatal growth with the onset of growth and developmental abnormalities in the first two years. By the time the disease has become fully manifest, height, weight, and head circumference are far below the fifth percentile. Progressive impairment of vision, hearing, and central and peripheral nervous system function leads to severe disability; death typically occurs in the first or second decade. CS type II is characterized by growth failure at birth, with little or no postnatal neurologic development. Congenital cataracts or other structural anomalies of the eye may be present. Affected children have early postnatal contractures of the spine (kyphosis, scoliosis) and joints. Death usually occurs by age five years. CS type III is a phenotype in which major clinical features associated with CS only become apparent after age two years; growth and/or cognition exceeds the expectations for CS type I. COFS syndrome is characterized by very severe prenatal developmental anomalies (arthrogryposis and microphthalmia). [from GeneReviews]
Polycystic kidney disease, adult type
Autosomal dominant polycystic kidney disease (ADPKD) is generally a late-onset multisystem disorder characterized by bilateral kidney cysts, liver cysts, and an increased risk of intracranial aneurysms. Other manifestations include: cysts in the pancreas, seminal vesicles, and arachnoid membrane; dilatation of the aortic root and dissection of the thoracic aorta; mitral valve prolapse; and abdominal wall hernias. Kidney manifestations include early-onset hypertension, kidney pain, and kidney insufficiency. Approximately 50% of individuals with ADPKD have end-stage kidney disease (ESKD) by age 60 years. The prevalence of liver cysts increases with age and occasionally results in clinically significant severe polycystic liver disease (PLD), most often in females. Overall, the prevalence of intracranial aneurysms is fivefold higher than in the general population and further increased in those with a positive family history of aneurysms or subarachnoid hemorrhage. There is substantial variability in the severity of kidney disease and other extra-kidney manifestations. [from GeneReviews]
Nail-patella syndrome
Nail-patella syndrome (NPS) (previously referred to as Fong's disease), encompasses the classic clinical tetrad of changes in the nails, knees, and elbows, and the presence of iliac horns. Nail changes are the most constant feature of NPS. Nails may be absent, hypoplastic, or dystrophic; ridged longitudinally or horizontally; pitted; discolored; separated into two halves by a longitudinal cleft or ridge of skin; and thin or (less often) thickened. The patellae may be small, irregularly shaped, or absent. Elbow abnormalities may include limitation of extension, pronation, and supination; cubitus valgus; and antecubital pterygia. Iliac horns are bilateral, conical, bony processes that project posteriorly and laterally from the central part of the iliac bones of the pelvis. Renal involvement, first manifest as proteinuria with or without hematuria, occurs in 30%-50% of affected individuals; end-stage renal disease occurs up to 15% of affected individuals. Primary open-angle glaucoma and ocular hypertension occur at increased frequency and at a younger age than in the general population. [from GeneReviews]
Williams syndrome
Williams syndrome (WS) is characterized by cardiovascular disease (elastin arteriopathy, peripheral pulmonary stenosis, supravalvar aortic stenosis, hypertension), distinctive facies, connective tissue abnormalities, intellectual disability (usually mild), a specific cognitive profile, unique personality characteristics, growth abnormalities, and endocrine abnormalities (hypercalcemia, hypercalciuria, hypothyroidism, and early puberty). Feeding difficulties often lead to poor weight gain in infancy. Hypotonia and hyperextensible joints can result in delayed attainment of motor milestones. [from GeneReviews]
DiGeorge syndrome
Individuals with 22q11.2 deletion syndrome (22q11.2DS) can present with a wide range of features that are highly variable, even within families. The major clinical manifestations of 22q11.2DS include congenital heart disease, particularly conotruncal malformations (ventricular septal defect, tetralogy of Fallot, interrupted aortic arch, and truncus arteriosus), palatal abnormalities (velopharyngeal incompetence, submucosal cleft palate, bifid uvula, and cleft palate), immune deficiency, characteristic facial features, and learning difficulties. Hearing loss can be sensorineural and/or conductive. Laryngotracheoesophageal, gastrointestinal, ophthalmologic, central nervous system, skeletal, and genitourinary anomalies also occur. Psychiatric illness and autoimmune disorders are more common in individuals with 22q11.2DS. [from GeneReviews]
Primary hyperoxaluria, type I
Primary hyperoxaluria type 1 (PH1) is caused by a deficiency of the liver peroxisomal enzyme alanine:glyoxylate-aminotransferase (AGT), which catalyzes the conversion of glyoxylate to glycine. When AGT activity is absent, glyoxylate is converted to oxalate, which forms insoluble calcium oxalate crystals that accumulate in the kidney and other organs. Individuals with PH1 are at risk for recurrent nephrolithiasis (deposition of calcium oxalate in the renal pelvis / urinary tract), nephrocalcinosis (deposition of calcium oxalate in the renal parenchyma), or end-stage renal disease (ESRD). Age at onset of symptoms ranges from infancy to the sixth decade. Approximately 10% of affected individuals present in infancy or early childhood with nephrocalcinosis, with or without nephrolithiasis, and failure to thrive related to renal failure. The majority of individuals with PH1 present in childhood or early adolescence, usually with symptomatic nephrolithiasis and normal or reduced kidney function. The remainder of affected individuals present in adulthood with recurrent renal stones and a mild-to-moderate reduction in kidney function. The natural history of untreated PH1 is one of progressive decline in renal function as a result of calcium oxalate deposits in kidney tissue and complications of nephrolithiasis (e.g., obstruction and infection) with eventual progression to oxalosis (widespread tissue deposition of calcium oxalate) and death from ESRD and/or complications of oxalosis. [from GeneReviews]
Focal segmental glomerulosclerosis 3, susceptibility to
Focal segmental glomerulosclerosis (FSGS) is a pathologic entity associated clinically with proteinuria, the nephrotic syndrome (NPHS), and progressive loss of renal function. It is a common cause of end-stage renal disease (ESRD) (Meyrier, 2005). For a general phenotypic description and a discussion of genetic heterogeneity of focal segmental glomerulosclerosis and nephrotic syndrome, see FSGS1 (603278). [from OMIM]
Finnish congenital nephrotic syndrome
Congenital nephrotic syndrome is a kidney condition that begins in infancy and typically leads to irreversible kidney failure (end-stage renal disease) by early childhood. Children with congenital nephrotic syndrome begin to have symptoms of the condition between birth and 3 months.The features of congenital nephrotic syndrome are caused by failure of the kidneys to filter waste products from the blood and remove them in urine. Signs and symptoms of this condition are excessive protein in the urine (proteinuria), increased cholesterol in the blood (hypercholesterolemia), an abnormal buildup of fluid in the abdominal cavity (ascites), and swelling (edema). Affected individuals may also have blood in the urine (hematuria), which can lead to a reduced number of red blood cells (anemia) in the body, abnormal blood clotting, or reduced amounts of certain white blood cells. Low white blood cell counts can lead to a weakened immune system and frequent infections in people with congenital nephrotic syndrome.Children with congenital nephrotic syndrome typically develop end-stage renal disease between ages 2 and 8, although with treatment, some may not have kidney failure until adolescence or early adulthood. [from MedlinePlus Genetics]
Carnitine palmitoyl transferase II deficiency, myopathic form
Carnitine palmitoyltransferase II (CPT II) deficiency is a disorder of long-chain fatty-acid oxidation. The three clinical presentations are lethal neonatal form, severe infantile hepatocardiomuscular form, and myopathic form (which is usually mild and can manifest from infancy to adulthood). While the former two are severe multisystemic diseases characterized by liver failure with hypoketotic hypoglycemia, cardiomyopathy, seizures, and early death, the latter is characterized by exercise-induced muscle pain and weakness, sometimes associated with myoglobinuria. The myopathic form of CPT II deficiency is the most common disorder of lipid metabolism affecting skeletal muscle and the most frequent cause of hereditary myoglobinuria. Males are more likely to be affected than females. [from GeneReviews]
Cystinuria
Cystinuria is an autosomal disorder characterized by impaired epithelial cell transport of cystine and dibasic amino acids (lysine, ornithine, and arginine) in the proximal renal tubule and gastrointestinal tract. The impaired renal reabsorption of cystine and its low solubility causes the formation of calculi in the urinary tract, resulting in obstructive uropathy, pyelonephritis, and, rarely, renal failure (summary by Barbosa et al., 2012). [from OMIM]
Polycystic kidney disease 2
Familial juvenile hyperuricemic nephropathy type 1
Autosomal dominant tubulointerstitial kidney disease – UMOD (ADTKD-UMOD) is characterized by normal urinalysis and slowly progressive chronic kidney disease (CKD), usually first noted in the teen years and progressing to end-stage renal disease (ESRD) between the third and seventh decades. Hyperuricemia is often present from an early age, and gout (resulting from reduced kidney excretion of uric acid) occurs in the teenage years in about 8% of affected individuals and develops in 55% of affected individuals over time. [from GeneReviews]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on