U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 42

1.

Central core myopathy

Congenital myopathy-1A (CMYP1A) with susceptibility to malignant hyperthermia is an autosomal dominant disorder of skeletal muscle characterized by muscle weakness primarily affecting the proximal muscles of the lower limbs beginning in infancy or early childhood, although later onset of symptoms has been reported. There is significant phenotypic variability, even within families, and the wide clinical diversity most likely depends on the severity of the RYR1 mutation. The disorder is static or slowly progressive; affected individuals typically show delayed motor development and usually achieve independent walking, although many have difficulty running or climbing stairs. Additional features often include mild facial weakness, joint laxity, shoulder girdle weakness, and skeletal manifestations, such as dislocation of the hips, foot deformities, scoliosis, and Achilles tendon contractures. Some patients present with orthopedic deformities. Serum creatine kinase is usually not elevated. Respiratory involvement is rare and there is no central nervous system or cardiac involvement. Patients with dominant mutations in the RYR1 gene are at risk for malignant hyperthermia and both disorders may segregate in the same family. Historically, patients with congenital myopathy due to RYR1 mutations were diagnosed based on the finding of pathologic central cores (central core disease; CCD) on muscle biopsy, which represent areas that lack oxidative enzymes and mitochondrial activity in type 1 muscle fibers. However, additional pathologic findings may also be observed, including cores and rods, central nuclei, fiber type disproportion, multiminicores, and uniform type 1 fibers. These histopathologic features are not always specific to RYR1 myopathy and often change over time (Quinlivan et al., 2003; Jungbluth et al., 2007; Klein et al., 2012; Ogasawara and Nishino, 2021). Some patients with RYR1 mutations have pathologic findings on muscle biopsy, but are clinically asymptomatic (Shuaib et al., 1987; Quane et al., 1993). Rare patients with a more severe phenotype have been found to carry a heterozygous mutation in the RYR1 gene inherited from an unaffected parent. However, in these cases, there is a possibility of recessive inheritance (CMYP1B; 255320) with either a missed second RYR1 mutation in trans or a genomic rearrangement on the other allele that is undetectable on routine genomic sequencing, since the RYR1 gene is very large and genetic analysis may be difficult (Klein et al., 2012). Genetic Heterogeneity of Congenital Myopathy See also CMYP1B (255320), caused by mutation in the RYR1 gene (180901) on chromosome 19q13; CMYP2A (161800), CMYP2B (620265), and CMYP2C (620278), caused by mutation in the ACTA1 gene (102610) on chromosome 1q42; CMYP3 (602771), caused by mutation in the SELENON gene (606210) on chromosome 1p36; CMYP4A (255310) and CMYP4B (609284), caused by mutation in the TPM3 gene (191030) on chromosome 1q21; CMYP5 (611705), caused by mutation in the TTN gene (188840) on chromosome 2q31; CMYP6 (605637), caused by mutation in the MYH2 gene (160740) on chromosome 17p13; CMYP7A (608358) and CMYP7B (255160), caused by mutation in the MYH7 gene (160760) on chromosome 14q11; CMYP8 (618654), caused by mutation in the ACTN2 gene (102573) on chromosome 1q43; CMYP9A (618822) and CMYP9B (618823), caused by mutation in the FXR1 gene (600819) on chromosome 3q28; CMYP10A (614399) and CMYP10B (620249), caused by mutation in the MEGF10 gene (612453) on chromosome 5q23; CMYP11 (619967), caused by mutation in the HACD1 gene (610467) on chromosome 10p12; CMYP12 (612540), caused by mutation in the CNTN1 gene (600016) on chromosome 12q12; CMYP13 (255995), caused by mutation in the STAC3 gene (615521) on chromosome 12q13; CMYP14 (618414), caused by mutation in the MYL1 gene (160780) on chromosome 2q34; CMYP15 (620161), caused by mutation in the TNNC2 gene (191039) on chromosome 20q13; CMYP16 (618524), caused by mutation in the MYBPC1 gene (160794) on chromosome 12q23; CMYP17 (618975), caused by mutation in the MYOD1 gene (159970) on chromosome 11p15; CMYP18 (620246), caused by mutation in the CACNA1S gene (114208) on chromosome 1q32; CMYP19 (618578), caused by mutation in the PAX7 gene (167410) on chromosome 1p36; CMYP20 (620310), caused by mutation in the RYR3 gene (180903) on chromosome 15q13; CMYP21 (620326), caused by mutation in the DNAJB4 gene (611327) on chromosome 1p31; CMYP22A (620351) and CMYP22B (620369), both caused by mutation in the SCN4A gene (603967) on chromosome 17q23; CMYP23 (609285), caused by mutation in the TPM2 gene (190990) on chromosome 9p13; and CMYP24 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. [from OMIM]

MedGen UID:
199773
Concept ID:
C0751951
Disease or Syndrome
2.

Actin accumulation myopathy

Congenital myopathy-2A (CMYP2A) is an autosomal dominant disorder of the skeletal muscle characterized by infantile- or childhood-onset myopathy with delayed motor milestones and nonprogressive muscle weakness. Of the patients with congenital myopathy caused by mutation in the ACTA1 gene, about 90% carry heterozygous mutations that are usually de novo and cause the severe infantile phenotype (CMYP2C; 620278). Some patients with de novo mutations have a more typical and milder disease course with delayed motor development and proximal muscle weakness, but are able to achieve independent ambulation. Less frequently, autosomal dominant transmission of the disorder within a family may occur when the ACTA1 mutation produces a phenotype compatible with adult life. Of note, intrafamilial variability has also been reported: a severely affected proband may be identified and then mildly affected or even asymptomatic relatives are found to carry the same mutation. The severity of the disease most likely depends on the detrimental effect of the mutation, although there are probably additional modifying factors (Ryan et al., 2001; Laing et al., 2009; Sanoudou and Beggs, 2001; Agrawal et al., 2004; Nowak et al., 2013; Sewry et al., 2019; Laitila and Wallgren-Pettersson, 2021). The most common histologic finding on muscle biopsy in patients with ACTA1 mutations is the presence of 'nemaline rods,' which represent abnormal thread- or rod-like structures ('nema' is Greek for 'thread'). However, skeletal muscle biopsy from patients with mutations in the ACTA1 gene can show a range of pathologic phenotypes. These include classic rods, intranuclear rods, clumped filaments, cores, or fiber-type disproportion, all of which are nonspecific pathologic findings and not pathognomonic of a specific congenital myopathy. Most patients have clinically severe disease, regardless of the histopathologic phenotype (Nowak et al., 2007; Sewry et al., 2019). ACTA1 mutations are the second most common cause of congenital myopathies classified histologically as 'nemaline myopathy' after mutations in the NEB gene (161650). ACTA1 mutations are overrepresented in the severe phenotype with early death (Laing et al., 2009). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030). [from OMIM]

MedGen UID:
777997
Concept ID:
C3711389
Disease or Syndrome
3.

Ullrich congenital muscular dystrophy 1A

Collagen VI-related dystrophies (COL6-RDs) represent a continuum of overlapping clinical phenotypes with Bethlem muscular dystrophy at the milder end, Ullrich congenital muscular dystrophy (UCMD) at the more severe end, and a phenotype in between UCMD and Bethlem muscular dystrophy, referred to as intermediate COL6-RD. Bethlem muscular dystrophy is characterized by a combination of proximal muscle weakness and joint contractures. Hypotonia and delayed motor milestones occur in early childhood; mild hypotonia and weakness may be present congenitally. By adulthood, there is evidence of proximal weakness and contractures of the elbows, Achilles tendons, and long finger flexors. The progression of weakness is slow, and more than two thirds of affected individuals older than age 50 years remain independently ambulatory indoors, while relying on supportive means for mobility outdoors. Respiratory involvement is not a consistent feature. UCMD is characterized by congenital weakness, hypotonia, proximal joint contractures, and striking hyperlaxity of distal joints. Decreased fetal movements are frequently reported. Some affected children acquire the ability to walk independently; however, progression of the disease results in a loss of ambulation by age ten to eleven years. Early and severe respiratory insufficiency occurs in all individuals, resulting in the need for nocturnal noninvasive ventilation (NIV) in the form of bilevel positive airway pressure (BiPAP) by age 11 years. Intermediate COL6-RD is characterized by independent ambulation past age 11 years and respiratory insufficiency that is later in onset than in UCMD and results in the need for NIV in the form of BiPAP by the late teens to early 20s. In contrast to individuals with Bethlem muscular dystrophy, those with intermediate COL6-RD typically do not achieve the ability to run, jump, or climb stairs without use of a railing. [from GeneReviews]

MedGen UID:
98046
Concept ID:
C0410179
Disease or Syndrome
4.

Autosomal recessive limb-girdle muscular dystrophy type 2C

A subtype of autosomal recessive limb-girdle muscular dystrophy characterized by a childhood onset of progressive shoulder and pelvic girdle muscle weakness and atrophy frequently associated with calf hypertrophy, diaphragmatic weakness, and/or variable cardiac abnormalities. Mild to moderate elevated serum creatine kinase levels and positive Gowers sign are reported. [from ORDO]

MedGen UID:
98045
Concept ID:
C0410173
Disease or Syndrome
5.

Nemaline myopathy 2

Nemaline myopathy-2 (NEM2) is an autosomal recessive skeletal muscle disorder with a wide range of severity. The most common clinical presentation is early-onset (in infancy or childhood) muscle weakness predominantly affecting proximal limb muscles. Muscle biopsy shows accumulation of Z-disc and thin filament proteins into aggregates named 'nemaline bodies' or 'nemaline rods,' usually accompanied by disorganization of the muscle Z discs. The clinical and histologic spectrum of entities caused by variants in the NEB gene is a continuum, ranging in severity. The distribution of weakness can vary from generalized muscle weakness, more pronounced in proximal limb muscles, to distal-only involvement, although neck flexor weakness appears to be rather consistent. Histologic patterns range from a severe usually nondystrophic disturbance of the myofibrillar pattern to an almost normal pattern, with or without nemaline bodies, sometimes combined with cores (summary by Lehtokari et al., 2014). Genetic Heterogeneity of Nemaline Myopathy See also NEM1 (255310), caused by mutation in the tropomyosin-3 gene (TPM3; 191030) on chromosome 1q22; NEM3 (161800), caused by mutation in the alpha-actin-1 gene (ACTA1; 102610) on chromosome 1q42; NEM4 (609285), caused by mutation in the beta-tropomyosin gene (TPM2; 190990) on chromosome 9p13; NEM5A (605355), also known as Amish nemaline myopathy, NEM5B (620386), and NEM5C (620389), all caused by mutation in the troponin T1 gene (TNNT1; 191041) on chromosome 19q13; NEM6 (609273), caused by mutation in the KBTBD13 gene (613727) on chromosome 15q22; NEM7 (610687), caused by mutation in the cofilin-2 gene (CFL2; 601443) on chromosome 14q13; NEM8 (615348), caused by mutation in the KLHL40 gene (615340), on chromosome 3p22; NEM9 (615731), caused by mutation in the KLHL41 gene (607701) on chromosome 2q31; NEM10 (616165), caused by mutation in the LMOD3 gene (616112) on chromosome 3p14; and NEM11 (617336), caused by mutation in the MYPN gene (608517) on chromosome 10q21. Several of the genes encode components of skeletal muscle sarcomeric thin filaments (Sanoudou and Beggs, 2001). Mutations in the NEB gene are the most common cause of nemaline myopathy (Lehtokari et al., 2006). [from OMIM]

MedGen UID:
342534
Concept ID:
C1850569
Disease or Syndrome
6.

Myosin storage myopathy

Autosomal dominant myosin storage congenital myopathy-7A (CMYP7A) is a skeletal muscle disorder with wide phenotypic variability. The age at symptom onset can range from early childhood to late adulthood. Affected individuals have proximal muscle weakness affecting the upper and lower limbs and distal muscle weakness of the lower limbs, resulting in gait difficulties and scapular winging (scapuloperoneal myopathy). Additional features may include thin habitus, high-arched palate, foot drop, pes cavus, calf pseudohypertrophy, and decreased reflexes. The severity is also variable: some patients develop respiratory insufficiency, joint contractures, and scoliosis in the first decades, whereas others are clinically unaffected, but show subtle signs of the disorder on examination. Serum creatine kinase may be normal or elevated. The disease is usually slowly progressive and most patients remain ambulatory. Skeletal muscle biopsy can show different abnormalities, including hyaline bodies, type 1 fiber predominance, congenital fiber-type disproportion (CFTD), and nonspecific myopathic changes with myofibrillar disarray. Intrafamilial variability is common (Dye et al., 2006; Pegoraro et al., 2007; review by Tajsharghi and Oldfors, 2013). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]

MedGen UID:
374868
Concept ID:
C1842160
Disease or Syndrome
7.

Eichsfeld type congenital muscular dystrophy

Rigid spine muscular dystrophy (RSMD) is a form of congenital muscular dystrophy. Disorders in this group cause muscle weakness and wasting (atrophy) beginning very early in life. In particular, RSMD involves weakness of the muscles of the torso and neck (axial muscles). Other characteristic features include spine stiffness and serious breathing problems.

In RSMD, muscle weakness is often apparent at birth or within the first few months of life. Affected infants can have poor head control and weak muscle tone (hypotonia), which may delay the development of motor skills such as crawling or walking. Over time, muscles surrounding the spine atrophy, and the joints of the spine develop deformities called contractures that restrict movement. The neck and back become stiff and rigid, and affected children have limited ability to move their heads up and down or side to side. Affected children eventually develop an abnormal curvature of the spine (scoliosis). In some people with RSMD, muscles in the inner thighs also atrophy, although it does not impair the ability to walk.

A characteristic feature of RSMD is breathing difficulty (respiratory insufficiency) due to restricted movement of the torso and weakness of the diaphragm, which is the muscle that separates the abdomen from the chest cavity. The breathing problems, which tend to occur only at night, can be life-threatening. Many affected individuals require a machine to help them breathe (mechanical ventilation) during sleep.

The combination of features characteristic of RSMD, particularly axial muscle weakness, spine rigidity, and respiratory insufficiency, is sometimes referred to as rigid spine syndrome. While these features occur on their own in RSMD, they can also occur along with additional signs and symptoms in other muscle disorders. The features of rigid spine syndrome typically appear at a younger age in people with RSMD than in those with other muscle disorders. [from MedlinePlus Genetics]

MedGen UID:
98047
Concept ID:
C0410180
Disease or Syndrome
8.

Frontotemporal dementia and/or amyotrophic lateral sclerosis 6

Frontotemporal dementia and/or amyotrophic lateral sclerosis-6 (FTDALS6) is an autosomal dominant neurodegenerative disorder with highly variable manifestations. Some patients present in adulthood with progressive FTD, often classified as the 'behavioral variant,' which is characterized by reduced empathy, impulsive behavior, personality changes, and reduced verbal output. Other patients present with features of amyotrophic lateral sclerosis (ALS), which is a fatal neurodegenerative disease characterized by upper and lower motor neuron dysfunction resulting in rapidly progressive paralysis and death from respiratory failure. The pathologic hallmarks of this disease include pallor of the corticospinal tract due to loss of motor neurons (in ALS). In both ALS and FTD, there are ubiquitin-positive inclusions within surviving neurons as well as deposition of pathologic TDP43 (TARDBP; 605078) or p62 (SQSTM1; 601530) aggregates. Patients with a D395G mutation (601023.0014) have been shown to develop pathologic tau (MAPT; 157140) aggregates. Some patients with the disorder may have features of both diseases, and there is significant interfamilial and intrafamilial phenotypic variability (summary by Johnson et al., 2010; Wong et al., 2018; Al-Obeidi et al., 2018; Darwich et al., 2020). For a general phenotypic description and a discussion of genetic heterogeneity of FTDALS, see FTDALS1 (105550). [from OMIM]

MedGen UID:
1759760
Concept ID:
C5436279
Disease or Syndrome
9.

Ehlers-Danlos syndrome, kyphoscoliotic and deafness type

FKBP14 kyphoscoliotic Ehlers-Danlos syndrome (FKBP14-kEDS) is characterized by congenital muscle hypotonia and weakness (typically improving during childhood), progressive scoliosis, joint hypermobility, hyperelastic skin, gross motor developmental delay, myopathy, and hearing impairment. Most affected children achieve independent walking between ages two and four years. A decline of motor function in adulthood may be seen, but affected individuals are likely to be able to participate in activities of daily living in adulthood and maintain independent walking. Occasional features underlying systemic connective tissue involvement include aortic rupture and arterial dissection, subdural hygroma, insufficiency of cardiac valves, bluish sclerae, bladder diverticula, inguinal or umbilical herniae, and premature rupture of membranes during pregnancy. Rarer findings may include bifid uvula with submucous or frank cleft palate, speech/language delay without true cognitive impairment, and rectal prolapse. [from GeneReviews]

MedGen UID:
482790
Concept ID:
C3281160
Disease or Syndrome
10.

Spinal muscular atrophy, type IV

Spinal muscular atrophy (SMA) is characterized by muscle weakness and atrophy resulting from progressive degeneration and irreversible loss of the anterior horn cells in the spinal cord (i.e., lower motor neurons) and the brain stem nuclei. The onset of weakness ranges from before birth to adulthood. The weakness is symmetric, proximal > distal, and progressive. Before the genetic basis of SMA was understood, it was classified into clinical subtypes based on maximum motor function achieved; however, it is now apparent that the phenotype of SMN1-associated SMA spans a continuum without clear delineation of subtypes. With supportive care only, poor weight gain with growth failure, restrictive lung disease, scoliosis, and joint contractures are common complications; however, newly available targeted treatment options are changing the natural history of this disease. [from GeneReviews]

MedGen UID:
325364
Concept ID:
C1838230
Disease or Syndrome
11.

MYH7-related skeletal myopathy

Laing distal myopathy is characterized by early-onset weakness (usually before age 5 years) that initially involves the dorsiflexors of the ankles and great toes and then the finger extensors, especially those of the third and fourth fingers. Weakness of the neck flexors is seen in most affected individuals and mild facial weakness is often present. After distal weakness has been present for more than ten years, mild proximal weakness may be observed. Life expectancy is normal. [from GeneReviews]

MedGen UID:
1647391
Concept ID:
C4552004
Disease or Syndrome
12.

Autosomal dominant centronuclear myopathy

Centronuclear myopathy-1 (CNM1) is an autosomal dominant congenital myopathy characterized by slowly progressive muscular weakness and wasting. The disorder involves mainly limb girdle, trunk, and neck muscles but may also affect distal muscles. Weakness may be present during childhood or adolescence or may not become evident until the third decade of life, and some affected individuals become wheelchair-bound in their fifties. Ptosis and limitation of eye movements occur frequently. The most prominent histopathologic features include high frequency of centrally located nuclei in a large number of extrafusal muscle fibers (which is the basis of the name of the disorder), radial arrangement of sarcoplasmic strands around the central nuclei, and predominance and hypotrophy of type 1 fibers (summary by Bitoun et al., 2005). Genetic Heterogeneity of Centronuclear Myopathy Centronuclear myopathy is a genetically heterogeneous disorder. See also X-linked CNM (CNMX; 310400), caused by mutation in the MTM1 gene (300415) on chromosome Xq28; CNM2 (255200), caused by mutation in the BIN1 gene (601248) on chromosome 2q14; CNM4 (614807), caused by mutation in the CCDC78 gene (614666) on chromosome 16p13; CNM5 (615959), caused by mutation in the SPEG gene (615950) on chromosome 2q35; and CNM6 (617760), caused by mutation in the ZAK gene (609479) on chromosome 2q31. The mutation in the MYF6 gene that was reported to cause a form of CNM, formerly designated CNM3, has been reclassified as a variant of unknown significance; see 159991.0001. Some patients with mutation in the RYR1 gene (180901) have findings of centronuclear myopathy on skeletal muscle biopsy (see 255320). [from OMIM]

MedGen UID:
1645741
Concept ID:
C4551952
Disease or Syndrome
13.

Congenital myasthenic syndrome 5

Congenital myasthenic syndromes (CMS) are a group of inherited disorders affecting the neuromuscular junction. Patients present clinically with onset of variable muscle weakness between infancy and adulthood. These disorders have been classified according to the location of the defect: presynaptic, synaptic, and postsynaptic. Endplate acetylcholinesterase deficiency is an autosomal recessive congenital myasthenic syndrome characterized by a defect within the synapse at the neuromuscular junction (NMJ). Mutations in COLQ result in a deficiency of acetylcholinesterase (AChE), which causes prolonged synaptic currents and action potentials due to extended residence of acetylcholine in the synaptic space. Treatment with ephedrine may be beneficial; AChE inhibitors and amifampridine should be avoided (summary by Engel et al., 2015). For a discussion of genetic heterogeneity of CMS, see CMS1A (601462). [from OMIM]

MedGen UID:
400481
Concept ID:
C1864233
Disease or Syndrome
14.

Congenital myopathy 23

Nemaline myopathy is divided into six types. In order of decreasing severity, the types are: severe congenital, Amish, intermediate congenital, typical congenital, childhood-onset, and adult-onset. The types are distinguished by the age when symptoms first appear and the severity of symptoms; however, there is overlap among the various types. The severe congenital type is the most life-threatening. Most individuals with this type do not survive past early childhood due to respiratory failure. The Amish type solely affects the Old Order Amish population of Pennsylvania and is typically fatal in early childhood. The most common type of nemaline myopathy is the typical congenital type, which is characterized by muscle weakness and feeding problems beginning in infancy. Most of these individuals do not have severe breathing problems and can walk unassisted. People with the childhood-onset type usually develop muscle weakness in adolescence. The adult-onset type is the mildest of all the various types. People with this type usually develop muscle weakness between ages 20 and 50.

Nemaline myopathy is a disorder that primarily affects skeletal muscles, which are muscles that the body uses for movement. People with nemaline myopathy have muscle weakness (myopathy) throughout the body, but it is typically most severe in the muscles of the face; neck; trunk; and other muscles close to the center of the body (proximal muscles), such as those of the upper arms and legs. This weakness can worsen over time. Affected individuals may have feeding and swallowing difficulties, foot deformities, abnormal curvature of the spine (scoliosis), and joint deformities (contractures). Most people with nemaline myopathy are able to walk, although some affected children may begin walking later than usual. As the condition progresses, some people may require wheelchair assistance. In severe cases, the muscles used for breathing are affected and life-threatening breathing difficulties can occur. [from MedlinePlus Genetics]

MedGen UID:
324513
Concept ID:
C1836447
Disease or Syndrome
15.

Charcot-Marie-Tooth disease recessive intermediate A

GDAP1-related hereditary motor and sensory neuropathy (GDAP1-HMSN) is a peripheral neuropathy (also known as a subtype of Charcot-Marie-Tooth disease) that typically affects the lower extremities earlier and more severely than the upper extremities. As the neuropathy progresses, the distal upper extremities also become severely affected. Proximal muscles can also become weak. Age at onset ranges from infancy to early childhood. In most cases, disease progression causes disabilities within the first or second decade of life. At the end of the second decade, most individuals are wheelchair bound. Disease progression varies considerably even within the same family. The neuropathy can be either of the demyelinating type with reduced nerve conduction velocities or the axonal type with normal nerve conduction velocities. Vocal cord paresis is common. Intelligence is normal. Life expectancy is usually normal, but on occasion may be reduced because of secondary complications. [from GeneReviews]

MedGen UID:
334012
Concept ID:
C1842197
Disease or Syndrome
16.

Myopathy, myosin storage, autosomal recessive

Autosomal recessive myosin storage congenital myopathy-7B (CMYP7B) is a skeletal muscle disorder characterized by the onset of scapuloperoneal muscle weakness in early childhood or young adulthood. Affected individuals have difficulty walking, steppage gait, and scapular winging due to shoulder girdle involvement. The severity and progression of the disorder is highly variable, even within families. Most patients develop respiratory insufficiency, nocturnal hypoventilation, and restrictive lung disease; some develop hypertrophic cardiomyopathy. Additional features include myopathic facies, high-arched palate, scoliosis, and muscle wasting with thin body habitus. Serum creatine kinase may be normal or elevated. Skeletal muscle biopsy shows variable findings, including myosin storage disease, type 1 fiber predominance, centralized nuclei, and multiminicore disease (Onengut et al., 2004; Tajsharghi et al., 2007; Beecroft et al., 2019). For a discussion of genetic heterogeneity of congenital myopathy, see CMYP1A (117000). [from OMIM]

MedGen UID:
340603
Concept ID:
C1850709
Disease or Syndrome
17.

Nemaline myopathy 5

Autosomal recessive severe infantile nemaline myopathy-5A (NEM5A) is a skeletal muscle disorder characterized by symptom onset soon after birth or in early infancy. Affected infants show axial hypotonia, stiffness, rigid spine with progressive kyphosis, pectus deformities, and contractures or limited movement of the large joints. Some patients show transient tremors. There is muscle atrophy and poor gross motor development. Respiratory insufficiency develops in the first years of life, often leading to death. Muscle biopsy shows nemaline rods (Johnston et al., 2000; Geraud et al., 2021). For a discussion of genetic heterogeneity of nemaline myopathy, see NEM2 (256030). [from OMIM]

MedGen UID:
344273
Concept ID:
C1854380
Disease or Syndrome
18.

Distal myopathy, Tateyama type

CAV3-related distal myopathy is one form of distal myopathy, a group of disorders characterized by weakness and loss of function affecting the muscles farthest from the center of the body (distal muscles), such as those of the hands and feet. People with CAV3-related distal myopathy experience wasting (atrophy) and weakness of the small muscles in the hands and feet that generally become noticeable in adulthood. A bump or other sudden impact on the muscles, especially those in the forearms, may cause them to exhibit repetitive tensing (percussion-induced rapid contraction). The rapid contractions can continue for up to 30 seconds and may be painful. Overgrowth (hypertrophy) of the calf muscles can also occur in CAV3-related distal myopathy. The muscles closer to the center of the body (proximal muscles) such as the thighs and upper arms are normal in this condition. [from MedlinePlus Genetics]

MedGen UID:
482073
Concept ID:
C3280443
Disease or Syndrome
19.

Glycogen storage disease XV

Glycogen storage disease type 15 is an extremely rare genetic glycogen storage disease reported in one patient to date. Clinical signs included muscle weakness, cardiac arrhythmia associated with accumulation of abnormal storage material in the heart and glycogen depletion in skeletal muscle. [from ORDO]

MedGen UID:
462104
Concept ID:
C3150754
Disease or Syndrome
20.

Myopathy, tubular aggregate, 1

Tubular aggregates in muscle, first described by Engel (1964), are structures of variable appearance consisting of an outer tubule containing either one or more microtubule-like structures or amorphous material. They are a nonspecific pathologic finding that may occur in a variety of circumstances, including alcohol- and drug-induced myopathies, exercise-induced cramps or muscle weakness, and inherited myopathies. Tubular aggregates are derived from the sarcoplasmic reticulum (Salviati et al., 1985) and are believed to represent an adaptive mechanism aimed at regulating an increased intracellular level of calcium in order to prevent the muscle fibers from hypercontraction and necrosis (Martin et al., 1997; Muller et al., 2001). Genetic Heterogeneity of Tubular Aggregate Myopathy See also TAM2 (615883), caused by mutation in the ORAI1 gene (610277) on chromosome 12q24. [from OMIM]

MedGen UID:
860163
Concept ID:
C4011726
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...