Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Photosynthetic reaction centre protein
photosystem II D2 protein (photosystem q(a) protein)
This model describes the Photosystem II, DII subunit (also called Q(A)) in bacterial and its equivalents in chloroplast of algae and higher plants. Photosystem II is in many ways functionally equivalent to bacterial reaction center. At the core of Photosystem II are several light harvesting cofactors including plastoquinones, pheophytins, phyloquinones etc. These cofactors are intimately associated with the polypeptides, which principally including subunits DI, DII, Cyt.b, Cyt.f and iron-sulphur protein. Together they participate in the electron transfer reactions that lead to the net production of the reducting equivalents in the form of NADPH, which are used for reduction of CO2 to carbohydrates(C6H1206). Phosystem II operates during oxygenic photosynthesis and principal electron donor is H2O. Although no high resolution X-ray structural data is presently available, recently a 3D structure of the supercomplex has been described by cryo-electron microscopy. Besides a huge body of literature exits that describes function using a variety of biochemical and biophysical techniques.
photosynthetic reaction center family protein; photosystem II D2 protein
photosynthetic reaction center family protein is a subunit of a photosynthetic system that utilizes light-induced electron transfer to generate protons that power reactions such as the synthesis of ATP, similar to photosystem II protein D; photosystem II D2 protein is a component of photosystem II (PSII), which is a light-driven water:plastoquinone oxidoreductase that uses light energy to abstract electrons from H(2)O, generating O(2) and a proton gradient subsequently used for ATP formation
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on