Examination of the structure of [Arg(8)]-vasopressin receptors (AVPRs) and oxytocin receptors (OTRs) suggests that G protein-coupled receptor kinases (GRKs) and protein kinase C (PKC) are involved in their signal transduction. To explore the physical association of AVPRs and OTRs with GRKs and PKC, wild types and mutated forms of these receptor subtypes were stably expressed as green fluorescent protein fusion proteins and analyzed by fluorescence, immunoprecipitation, and immunoblotting. Addition of a C-terminal GFP tag did not interfere with ligand binding, internalization, and signal transduction. After agonist stimulation, PKC dissociated from the V(1)R, did not associate with the V(2)R, but associated with the V(3)R and the OTR. After AVP stimulation, only GRK5 briefly associated with AVPRs following a time course that varied with the receptor subtype. No GRK associated with the OTR. Exchanging the V(1)R and V(2)R C termini altered the time course of PKC and GRK5 association. Deletion of the V(1)R C terminus resulted in no PKC association and a ligand-independent sustained association of GRK5 with the receptor. Deletion of the GRK motif prevented association and reduced receptor phosphorylation. Thus, agonist stimulation of AVP/OT receptors leads to receptor subtype-specific interactions with GRK and PKC through specific motifs present in the C termini of the receptors.