The peroxisome and the eye

Surv Ophthalmol. 1991 Mar-Apr;35(5):353-68. doi: 10.1016/0039-6257(91)90185-i.

Abstract

Several childhood multisystem disorders with prominent ophthalmological manifestations have been ascribed to the malfunction of the peroxisome, a subcellular organelle. The peroxisomal disorders have been divided into three groups: 1) those that result from defective biogenesis of the peroxisome (Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum's disease); 2) those that result from multiple enzyme deficiencies (rhizomelic chondrodysplasia punctata); and 3) those that result from a single enzyme deficiency (X-linked adrenoleukodystrophy, primary hyperoxaluria type 1). Zellweger syndrome, the most lethal of the three peroxisomal biogenesis disorders, causes infantile hypotonia, seizures, and death within the first year. Ophthalmic manifestations include corneal opacification, cataract, glaucoma, pigmentary retinopathy and optic atrophy. Neonatal adrenoleukodystrophy and infantile Refsum's disease appear to be genetically distinct, but clinically, biochemically, and pathologically similar to Zellweger syndrome, although milder. Rhizomelic chondrodysplasia punctata, a peroxisomal disorder which results from at least two peroxisomal enzyme deficiencies, presents at birth with skeletal abnormalities and patients rarely survive past one year of age. The most prominent ocular manifestation consists of bilateral cataracts. X-linked (childhood) adrenoleukodystrophy, results from a deficiency of a single peroxisomal enzyme, presents in the latter part of the first decade with behavioral, cognitive and visual deterioration. The vision loss results from demyelination of the entire visual pathway, but the outer retina is spared. Primary hyperoxaluria type 1 manifests parafoveal subretinal pigment proliferation. Classical Refsum's disease may also be a peroxisomal disorder, but definitive evidence is lacking. Early identification of these disorders, which may depend on recognizing the ophthalmological findings, is critical for prenatal diagnosis, treatment, and genetic counselling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Abnormalities, Multiple / etiology
  • Adrenoleukodystrophy / etiology
  • Animals
  • Fundus Oculi
  • Humans
  • Hyperoxaluria / etiology
  • Metabolism, Inborn Errors / etiology
  • Microbodies*
  • Refsum Disease / etiology
  • Retinal Diseases / etiology*
  • Retinal Diseases / pathology
  • Zellweger Syndrome / etiology