PDGF receptor-{beta} modulates metanephric mesenchyme chemotaxis induced by PDGF AA

Am J Physiol Renal Physiol. 2009 Feb;296(2):F406-17. doi: 10.1152/ajprenal.90368.2008. Epub 2008 Nov 19.

Abstract

PDGF B chain or PDGF receptor (PDGFR)-beta-deficient (-/-) mice lack mesangial cells. To study responses of alpha- and beta-receptor activation to PDGF ligands, metanephric mesenchymal cells (MMCs) were established from embryonic day E11.5 wild-type (+/+) and -/- mouse embryos. PDGF BB stimulated cell migration in +/+ cells, whereas PDGF AA did not. Conversely, PDGF AA was chemotactic for -/- MMCs. The mechanism by which PDGFR-beta inhibited AA-induced migration was investigated. PDGF BB, but not PDGF AA, increased intracellular Ca(2+) and the production of reactive oxygen species (ROS) in +/+ cells. Transfection of -/- MMCs with the wild-type beta-receptor restored cell migration and ROS generation in response to PDGF BB and inhibited AA-induced migration. Inhibition of Ca(2+) signaling facilitated PDGF AA-induced chemotaxis in the wild-type cells. The antioxidant N-acetyl-l-cysteine (NAC) or the NADPH oxidase inhibitor diphenyleneiodonium (DPI) abolished the BB-induced increase in intracellular Ca(2+) concentration, suggesting that ROS act as upstream mediators of Ca(2+) in suppressing PDGF AA-induced migration. These data indicate that ROS and Ca(2+) generated by active PDGFR-beta play an essential role in suppressing PDGF AA-induced migration in +/+ MMCs. During kidney development, PDGFR beta-mediated ROS generation and Ca(2+) influx suppress PDGF AA-induced chemotaxis in metanephric mesenchyme.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Calcium / metabolism
  • Calcium Signaling
  • Cells, Cultured
  • Chemotaxis*
  • DNA / biosynthesis
  • Kidney / embryology*
  • Mesoderm / physiology*
  • Mice
  • Mice, Knockout
  • Phosphatidylinositol 3-Kinases / metabolism
  • Platelet-Derived Growth Factor / metabolism*
  • Protein Isoforms / metabolism
  • Reactive Oxygen Species / metabolism
  • Receptor, Platelet-Derived Growth Factor alpha / metabolism
  • Receptor, Platelet-Derived Growth Factor beta / genetics
  • Receptor, Platelet-Derived Growth Factor beta / metabolism*
  • Up-Regulation

Substances

  • Platelet-Derived Growth Factor
  • Protein Isoforms
  • Reactive Oxygen Species
  • platelet-derived growth factor A
  • DNA
  • Phosphatidylinositol 3-Kinases
  • Receptor, Platelet-Derived Growth Factor alpha
  • Receptor, Platelet-Derived Growth Factor beta
  • Calcium