Cdc7-Dbf4-mediated phosphorylation of HSP90-S164 stabilizes HSP90-HCLK2-MRN complex to enhance ATR/ATM signaling that overcomes replication stress in cancer

Sci Rep. 2017 Dec 5;7(1):17024. doi: 10.1038/s41598-017-17126-2.

Abstract

Cdc7-Dbf4 kinase plays a key role in the initiation of DNA replication and contributes to the replication stress in cancer. The activity of human Cdc7-Dbf4 kinase remains active and acts as an effector of checkpoint under replication stress. However, the downstream targets of Cdc7-Dbf4 contributed to checkpoint regulation and replication stress-support function in cancer are not fully identified. In this work, we showed that aberrant Cdc7-Dbf4 induces DNA lesions that activate ATM/ATR-mediated checkpoint and homologous recombination (HR) DNA repair. Using a phosphoproteome approach, we identified HSP90-S164 as a target of Cdc7-Dbf4 in vitro and in vivo. The phosphorylation of HSP90-S164 by Cdc7-Dbf4 is required for the stability of HSP90-HCLK2-MRN complex and the function of ATM/ATR signaling cascade and HR DNA repair. In clinically, the phosphorylation of HSP90-S164 indeed is increased in oral cancer patients. Our results indicate that aberrant Cdc7-Dbf4 enhances replication stress tolerance by rewiring ATR/ATM mediated HR repair through HSP90-S164 phosphorylation and by promoting recovery from replication stress. We provide a new solution to a subtyping of cancer patients with dominant ATR/HSP90 expression by combining inhibitors of ATR-Chk1, HSP90, or Cdc7 in cancer combination therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis
  • Ataxia Telangiectasia Mutated Proteins / genetics
  • Ataxia Telangiectasia Mutated Proteins / metabolism
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Carcinoma, Squamous Cell / genetics
  • Carcinoma, Squamous Cell / metabolism
  • Carcinoma, Squamous Cell / pathology*
  • Case-Control Studies
  • Cell Cycle Proteins / genetics
  • Cell Cycle Proteins / metabolism
  • Cell Proliferation
  • DNA Replication*
  • Follow-Up Studies
  • Gene Expression Regulation, Neoplastic*
  • HSP90 Heat-Shock Proteins / genetics
  • HSP90 Heat-Shock Proteins / metabolism
  • Humans
  • Mouth Neoplasms / genetics
  • Mouth Neoplasms / metabolism
  • Mouth Neoplasms / pathology*
  • Phosphorylation
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • Protein-Tyrosine Kinases / genetics
  • Protein-Tyrosine Kinases / metabolism
  • Signal Transduction
  • Stress, Physiological*
  • Tumor Cells, Cultured

Substances

  • Biomarkers, Tumor
  • Cell Cycle Proteins
  • DBF4 protein, human
  • HSP90 Heat-Shock Proteins
  • CDC7 protein, human
  • Clk dual-specificity kinases
  • Protein-Tyrosine Kinases
  • ATM protein, human
  • ATR protein, human
  • Ataxia Telangiectasia Mutated Proteins
  • Protein Serine-Threonine Kinases