Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor

Cell Death Dis. 2018 Apr 27;9(6):613. doi: 10.1038/s41419-018-0573-2.

Abstract

Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis: Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1-155 significantly reduced infarct size by over 50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen deposition and levels of the TG2-mediated protein crosslink ε(γ-glutamyl)lysine were significantly reduced. No cardiac rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac fibrosis, we show that both TGFβ1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFβ1-induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1-155, suggesting a new role for TG2 in regulating TGFβ1 signalling in addition to its role in latent TGFβ1 activation. In conclusion, TG2 has a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective small-molecule inhibitor can attenuate cardiac fibrosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II
  • Animals
  • Collagen / metabolism
  • Dipeptides / metabolism
  • Disease Models, Animal
  • Fibrosis
  • GTP-Binding Proteins / antagonists & inhibitors*
  • GTP-Binding Proteins / metabolism
  • Human Umbilical Vein Endothelial Cells / drug effects
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Mice
  • Myocardium / pathology*
  • Myofibroblasts / drug effects
  • Myofibroblasts / metabolism
  • Myofibroblasts / pathology
  • Protein Glutamine gamma Glutamyltransferase 2
  • Small Molecule Libraries / pharmacology*
  • Transforming Growth Factor beta1 / pharmacology
  • Transglutaminases / antagonists & inhibitors*
  • Transglutaminases / metabolism

Substances

  • Dipeptides
  • Small Molecule Libraries
  • Transforming Growth Factor beta1
  • Angiotensin II
  • epsilon-(gamma-glutamyl)-lysine
  • Collagen
  • Protein Glutamine gamma Glutamyltransferase 2
  • Transglutaminases
  • GTP-Binding Proteins