Color Compensation in Anomalous Trichromats Assessed with fMRI

Curr Biol. 2021 Mar 8;31(5):936-942.e4. doi: 10.1016/j.cub.2020.11.039. Epub 2020 Dec 15.

Abstract

Anomalous trichromacy is a common form of congenital color deficiency resulting from a genetic alteration in the photopigments of the eye's light receptors. The changes reduce sensitivity to reddish and greenish hues, yet previous work suggests that these observers may experience the world to be more colorful than their altered receptor sensitivities would predict, potentially indicating an amplification of post-receptoral signals. However, past evidence suggesting such a gain adjustment rests on subjective measures of color appearance or salience. We directly tested for neural amplification by using fMRI to measure cortical responses in color-anomalous and normal control observers. Color contrast response functions were measured in two experiments with different tasks to control for attentional factors. Both experiments showed a predictable reduction in chromatic responses for anomalous trichromats in primary visual cortex. However, in later areas V2v and V3v, chromatic responses in the two groups were indistinguishable. Our results provide direct evidence for neural plasticity that compensates for the deficiency in the initial receptor color signals and suggest that the site of this compensation is in early visual cortex.

Keywords: adaptation; anomalous trichromacy; attention; color blindness; color vision; color vision deficiency; compensation; early visual cortex; fMRI; plasticity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adult
  • Color Perception / physiology*
  • Color Vision Defects / physiopathology*
  • Female
  • Humans
  • Magnetic Resonance Imaging*
  • Male
  • Primary Visual Cortex / physiopathology*
  • Young Adult