A multiscale four-layer finite element model to predict the effects of collagen fibers on skin behavior under tension

Proc Inst Mech Eng H. 2021 Nov;235(11):1274-1287. doi: 10.1177/09544119211022059. Epub 2021 Jul 19.

Abstract

Human skin is a complex multilayered multiscale material that exhibits nonlinear and anisotropic mechanical behavior. It has been reported that its macroscopic behavior in terms of progression of wrinkles induced by aging is strongly dependent on its microscopic composition in terms of collagen fibers in the dermis layer. In the present work, a multiscale four-layer 2D finite element model of the skin was developed and implemented in Matlab code. The focus here was to investigate the effects of dermal collagen on the macroscopic mechanical behavior of the skin. The skin was modeled by a continuum model composed of four layers: the Stratum Corneum, the epidermis, the dermis, and the hypodermis. The geometry of the different layers of the skin was represented in a 2D model with their respective thicknesses and material properties taken from literature data. The macroscopic behavior of the dermis was modeled with a nonlinear multiscale approach based on a multiscale elastic model of collagen structure going from cross-linked molecules to the collagen fiber, combined with a Mori-Tanaka homogenization scheme. The model includes the nonlinear elasticity of the collagen fiber density, the fiber radius, the undulation, and the fiber orientation. An axial tension was applied incrementally to the lateral surfaces of the skin model. A parametric study was performed in order to investigate the effect of the collagen constituents on the macroscopic skin mechanical behavior in terms of the predicted macroscopic stress-strain curve of the skin. The results of the FE computations under uniaxial tension showed that the different layers undergo different strains, leading to a difference in the transversal deformation at the top surface. In addition, the parametric study revealed a strong correlation between macroscopic skin elasticity and its collagen structure.

Keywords: Skin; collagen fibers; dermis; finite elements; multi-layer; multiscale.

MeSH terms

  • Collagen*
  • Elasticity
  • Finite Element Analysis
  • Humans
  • Skin*
  • Stress, Mechanical

Substances

  • Collagen