Mechanistic roles of tyrosine phosphorylation in reversible amyloids, autoinhibition, and endosomal membrane association of ALIX

J Biol Chem. 2021 Nov;297(5):101328. doi: 10.1016/j.jbc.2021.101328. Epub 2021 Oct 22.

Abstract

Human apoptosis-linked gene-2 interacting protein X (ALIX), a versatile adapter protein, regulates essential cellular processes by shuttling between late endosomal membranes and the cytosol, determined by its interactions with Src kinase. Here, we investigate the molecular basis of these transitions and the effects of tyrosine phosphorylation on the interplay between structure, assembly, and intramolecular and intermolecular interactions of ALIX. As evidenced by transmission electron microscopy, fluorescence and circular dichroism spectroscopy, the proline-rich domain of ALIX, which encodes binding epitopes of multiple cellular partners, formed rope-like β-sheet-rich reversible amyloid fibrils that dissolved upon Src-mediated phosphorylation and were restored on protein-tyrosine phosphatase 1B-mediated dephosphorylation of its conserved tyrosine residues. Analyses of the Bro1 domain of ALIX by solution NMR spectroscopy elucidated the conformational changes originating from its phosphorylation by Src and established that Bro1 binds to hyperphosphorylated proline-rich domain and to analogs of late endosomal membranes via its highly basic surface. These results uncover the autoinhibition mechanism that relocates ALIX to the cytosol and the diverse roles played by tyrosine phosphorylation in cellular and membrane functions of ALIX.

Keywords: NMR; endosomal sorting complexes required for transport; paramagnetic relaxation enhancement; post-translational modifications; programmed cell death 6 interacting protein.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amyloid* / chemistry
  • Amyloid* / metabolism
  • Calcium-Binding Proteins* / chemistry
  • Calcium-Binding Proteins* / metabolism
  • Cell Cycle Proteins* / chemistry
  • Cell Cycle Proteins* / metabolism
  • Endosomal Sorting Complexes Required for Transport* / chemistry
  • Endosomal Sorting Complexes Required for Transport* / metabolism
  • Endosomes* / chemistry
  • Endosomes* / metabolism
  • Humans
  • Intracellular Membranes* / chemistry
  • Intracellular Membranes* / metabolism
  • Nuclear Magnetic Resonance, Biomolecular
  • Phosphorylation
  • Protein Domains
  • Structure-Activity Relationship
  • Tyrosine

Substances

  • Amyloid
  • Calcium-Binding Proteins
  • Cell Cycle Proteins
  • Endosomal Sorting Complexes Required for Transport
  • PDCD6IP protein, human
  • Tyrosine