Homozygous Ser-1 to Pro-1 mutation in parathyroid hormone identified in hypocalcemic patients results in secretion of a biologically inactive pro-hormone

Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2208047120. doi: 10.1073/pnas.2208047120. Epub 2023 Feb 16.

Abstract

Like other secreted peptides, nascent parathyroid hormone (PTH) is synthesized with a pre- and a pro-sequence (25 and 6 amino acids, respectively). These precursor segments are sequentially removed in parathyroid cells before packaging into secretory granules. Three patients from two unrelated families who presented during infancy with symptomatic hypocalcemia were found to have a homozygous serine (S) to proline (P) change affecting the first amino acid of the mature PTH. Unexpectedly, biological activity of synthetic [P1]PTH(1-34) was indistinguishable from that of unmodified [S1]PTH(1-34). However, in contrast to conditioned medium from COS-7 cells expressing prepro[S1]PTH(1-84), medium from cells expressing prepro[P1]PTH(1-84) failed to stimulate cAMP production despite similar PTH levels when measured by an intact assay that detects PTH(1-84) and large amino-terminally truncated fragments thereof. Analysis of the secreted, but inactive PTH variant led to the identification of pro[P1]PTH(-6 to +84). Synthetic pro[P1]PTH(-6 to +34) and pro[S1]PTH(-6 to +34) had much less bioactivity than the corresponding PTH(1-34) analogs. Unlike pro[S1]PTH(-6 to +34), pro[P1]PTH(-6 to +34) was resistant to cleavage by furin suggesting that the amino acid variant impairs preproPTH processing. Consistent with this conclusion, plasma of patients with the homozygous P1 mutation had elevated proPTH levels, as determined with an in-house assay specific for pro[P1]PTH(-6 to +84). In fact, a large fraction of PTH detected by the commercial intact assay represented the secreted pro[P1]PTH. In contrast, two commercial biointact assays that use antibodies directed against the first few amino acid residues of PTH(1-84) for capture or detection failed to detect pro[P1]PTH.

Keywords: PTH; calcium; hypoparathyroidism; phosphate; pseudohypoparathyroidism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids / genetics
  • Humans
  • Hypocalcemia* / genetics
  • Mutation
  • Parathyroid Hormone / genetics
  • Parathyroid Hormone / metabolism
  • Proline / genetics

Substances

  • Parathyroid Hormone
  • Proline
  • Amino Acids