The voltage-sensing domain of a hERG1 mutant is a cation-selective channel

Biophys J. 2022 Dec 6;121(23):4585-4599. doi: 10.1016/j.bpj.2022.10.032. Epub 2022 Oct 29.

Abstract

A cationic leak current known as an "omega current" may arise from mutations of the first charged residue in the S4 of the voltage sensor domains of sodium and potassium voltage-gated channels. The voltage-sensing domains (VSDs) in these mutated channels act as pores allowing nonspecific passage of cations, such as Li+, K+, Cs+, and guanidinium. Interestingly, no omega currents have been previously detected in the nonswapped voltage-gated potassium channels such as the human-ether-a-go-go-related (hERG1), hyperpolarization-activated cyclic nucleotide-gated, and ether-a-go-go channels. In this work, we discovered a novel omega current by mutating the first charged residue of the S4 of the hERG1, K525 to serine. To characterize this omega current, we used various probes, including the hERG1 pore domain blocker, dofetilide, to show that the omega current does not require cation flux via the canonical pore domain. In addition, the omega flux does not cross the conventional selectivity filter. We also show that the mutated channel (K525S hERG1) conducts guanidinium. These data are indicative of the formation of an omega current channel within the VSD. Using molecular dynamics simulations with replica-exchange umbrella sampling simulations of the wild-type hERG1 and the K525S hERG1, we explored the molecular underpinnings governing the cation flow in the VSD of the mutant. We also show that the wild-type hERG1 may form water crevices supported by the biophysical surface accessibility data. Overall, our multidisciplinary study demonstrates that the VSD of hERG1 may act as a cation-selective channel wherein a mutation of the first charged residue in the S4 generates an omega current. Our simulation uncovers the atomistic underpinning of this mechanism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cations
  • ERG1 Potassium Channel* / chemistry
  • ERG1 Potassium Channel* / genetics
  • Humans
  • Molecular Dynamics Simulation
  • Mutation

Substances

  • Cations
  • KCNH2 protein, human
  • ERG1 Potassium Channel