Upregulation of HTRA1 mediated by the lncRNA NEAT1/miR-141-3p axis contributes to endometriosis development through activating NLRP3 inflammasome-mediated pyroptotic cell death and cellular inflammation

In Vitro Cell Dev Biol Anim. 2023 Mar;59(3):166-178. doi: 10.1007/s11626-023-00760-8. Epub 2023 Apr 5.

Abstract

The present study identified a novel upstream long chain non-coding (lncRNA) NEAT1/miR-141-3p/HTRA1 axis that regulated the activation of NLR family pyrin domain containing 3 (NLRP3) inflammasome to modulate endometriosis (EM) development. Specifically, clinical data suggested that the expression of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), the cleavage of caspase-1 and gasdermin D (GSDMD), and the production of inflammatory cytokines (interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-18) were all significantly increased in the ectopic endometrium (EE) tissues, compared to the normal endometrium (NE) tissues. Then, through analyzing the datasets from GEO database (GSE2339, GSE58178, and GSE7305) using the GEO2R bioinformatics tools, we verified that HtrA Serine Peptidase 1 (HTRA1) was especially enriched in the EE tissues compared to the NE tissues. To further confirm the biological functions of HTRA1, HTRA1 was overexpressed or downregulated in primary human endometrial stromal cells (hESCs) isolated from NE tissues or EE tissues, respectively. The results showed that upregulation of HTRA1 activated NLRP3 inflammasome-mediated pyroptotic cell death and cellular inflammation in NE-derived hESCs, whereas silencing of HTRA1 played an opposite role in EE-derived hESCs. In addition, the lncRNA NEAT1/miR-141-3p axis was screened as the upstream regulator of HTRA1. Mechanistically, lncRNA NEAT1 sponged miR-141-3p to positively regulate HTRA1 in a competing endogenous RNA (ceRNA) mechanisms-dependent manner. The recovery experiments in hESCs from NE and EE tissues confirmed that lncRNA NEAT1 overexpression promoted NLRP3 inflammasome-mediated pyroptotic cell death through regulating the miR-141-3p/HTRA1 axis. Taken together, this study firstly uncovered the underlying mechanisms by which a novel lncRNA NEAT1/miR-141-3p/HTRA1-NLRP3 pathway contributed to the development of EM, which provided novel diagnostic and therapeutic biomarkers for this disease.

Keywords: Endometriosis; HtrA Serine Peptidase 1; Nod-like receptor protein 3; Pyroptosis.

MeSH terms

  • Animals
  • Endometriosis* / genetics
  • Female
  • High-Temperature Requirement A Serine Peptidase 1 / genetics
  • High-Temperature Requirement A Serine Peptidase 1 / metabolism
  • Humans
  • Inflammasomes / genetics
  • Inflammasomes / metabolism
  • Inflammation / genetics
  • Inflammation / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • NLR Family, Pyrin Domain-Containing 3 Protein / genetics
  • NLR Family, Pyrin Domain-Containing 3 Protein / metabolism
  • Pyroptosis
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • Tumor Necrosis Factor-alpha / metabolism
  • Up-Regulation / genetics

Substances

  • High-Temperature Requirement A Serine Peptidase 1
  • HTRA1 protein, human
  • Inflammasomes
  • MicroRNAs
  • MIRN141 microRNA, human
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • RNA, Long Noncoding
  • Tumor Necrosis Factor-alpha
  • NEAT1 long non-coding RNA, human