Identification of the Axis β-Catenin-BTK in the Dynamic Adhesion of Chronic Lymphocytic Leukemia Cells to Their Microenvironment

Int J Mol Sci. 2023 Dec 18;24(24):17623. doi: 10.3390/ijms242417623.

Abstract

In the microenvironment, cell interactions are established between different cell types to regulate their migration, survival and activation. β-Catenin is a multifunctional protein that stabilizes cell-cell interactions and regulates cell survival through its transcriptional activity. We used chronic lymphocytic leukemia (CLL) cells as a cellular model to study the role of β-catenin in regulating the adhesion of tumor cells to their microenvironment, which is necessary for tumor cell survival and accumulation. When co-cultured with a stromal cell line (HS-5), a fraction of the CLL cells adhere to stromal cells in a dynamic fashion regulated by the different levels of β-catenin expression. In non-adherent cells, β-catenin is stabilized in the cytosol and translocates into the nucleus, increasing the expression of cyclin D1. In adherent cells, the level of cytosolic β-catenin is low but membrane β-catenin helps to stabilize the adhesion of CLL to stromal cells. Indeed, the overexpression of β-catenin enhances the interaction of CLL with HS-5 cells, suggesting that this protein behaves as a regulator of cell adhesion to the stromal component and of the transcriptional regulation of cell survival. Inhibitors that block the stabilization of β-catenin alter this equilibrium and effectively disrupt the support that CLL cells receive from the cross-talk with the stroma.

Keywords: BTK; CLL; microenvironment; stromal cells; β-catenin.

MeSH terms

  • Agammaglobulinaemia Tyrosine Kinase* / metabolism
  • Cell Communication
  • Cell Line, Tumor
  • Humans
  • Leukemia, Lymphocytic, Chronic, B-Cell* / pathology
  • Stromal Cells / metabolism
  • Tumor Microenvironment
  • beta Catenin* / genetics
  • beta Catenin* / metabolism

Substances

  • beta Catenin
  • Agammaglobulinaemia Tyrosine Kinase

Grants and funding