In Depth Quantitative Proteomic and Transcriptomic Characterization of Human Adipocyte Differentiation Using the SGBS Cell Line

Proteomics. 2020 May 8:e1900405. doi: 10.1002/pmic.201900405. Online ahead of print.

Abstract

Most information on molecular processes accompanying and driving adipocyte differentiation are derived from rodent models. Here, we provide a comprehensive analysis of combined transcriptomic and proteomic alterations during adipocyte differentiation in Simpson-Golabi-Behmel Syndrome (SGBS) cells. The SGBS cells are a well-established and the most widely applied cell model to study human adipocyte differentiation and cell biology. However, the molecular alterations during human adipocyte differentiation in SGBS cells have not yet been described in a combined analysis of proteome and transcriptome. Here we present a global proteomic and transcriptomic data set comprising relative quantification of a total of 14372 mRNA transcripts and 2641 intracellular and secreted proteins. 1153 proteins and 313 genes were determined as differentially expressed between preadipocytes and the fully differentiated cells including adiponectin, lipoprotein lipase, fatty acid binding protein 4, fatty acid synthase, stearoyl-CoA desaturase and apolipoprotein E and many other proteins from the fatty acid synthesis, amino acid synthesis as well as glucose and lipid metabolic pathways. Preadipocyte markers, such as latexin, GATA6 and CXCL6, were found to be significantly downregulated at the protein and transcript level. This multi-omics data set provides a deep molecular profile of adipogenesis and will support future studies to understand adipocyte function. This article is protected by copyright. All rights reserved.

Keywords: Simpson-Golabi-Behmel Syndrome (SGBS) cells; adipocyte differentiation; adipogenesis; obesity; proteomics.