Structural analysis of altered large-subunit loop-6/carboxy-terminus interactions that influence catalytic efficiency and CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase

Biochemistry. 2007 Oct 2;46(39):11080-9. doi: 10.1021/bi701063f. Epub 2007 Sep 8.

Abstract

The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel of ribulose-1,5-bisphosphate carboxylase/oxygenase plays a key role in discriminating between CO2 and O2. Genetic screening in Chlamydomonas reinhardtii previously identified a loop-6 V331A substitution that decreases carboxylation and CO2/O2 specificity. Revertant selection identified T342I and G344S substitutions that restore photosynthetic growth by increasing carboxylation and specificity of the V331A enzyme. In numerous X-ray crystal structures, loop 6 is closed or open depending on the activation state of the enzyme and the presence or absence of ligands. The carboxy terminus folds over loop 6 in the closed state. To study the molecular basis for catalysis, directed mutagenesis and chloroplast transformation were used to create T342I and G344S substitutions alone. X-ray crystal structures were then solved for the V331A, V331A/T342I, T342I, and V331A/G344S enzymes, as well as for a D473E enzyme created to assess the role of the carboxy terminus in loop-6 closure. V331A disturbs a hydrophobic pocket, abolishing several van der Waals interactions. These changes are complemented by T342I and G344S, both of which alone cause decreases in CO2/O2 specificity. In the V331A/T342I revertant enzyme, Arg339 main-chain atoms are displaced. In V331A/G344S, alpha-helix 6 is shifted. D473E causes disorder of the carboxy terminus, but loop 6 remains closed. Interactions between a transition-state analogue and several residues are altered in the mutant enzymes. However, active-site Lys334 at the apex of loop 6 has a normal conformation. A variety of subtle interactions must be responsible for catalytic efficiency and CO2/O2 specificity.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algal Proteins / chemistry
  • Algal Proteins / genetics
  • Algal Proteins / metabolism*
  • Amino Acid Substitution
  • Animals
  • Binding Sites
  • Carbon Dioxide / metabolism*
  • Catalysis
  • Chlamydomonas reinhardtii / enzymology
  • Chlamydomonas reinhardtii / genetics
  • Chlamydomonas reinhardtii / metabolism
  • Chloroplasts / enzymology
  • Chloroplasts / metabolism
  • Crystallography, X-Ray
  • Models, Molecular
  • Mutagenesis, Site-Directed
  • Mutation
  • Oxygen / metabolism*
  • Protein Binding
  • Protein Structure, Secondary
  • Protein Structure, Tertiary
  • Ribulose-Bisphosphate Carboxylase / chemistry
  • Ribulose-Bisphosphate Carboxylase / genetics
  • Ribulose-Bisphosphate Carboxylase / metabolism*
  • Substrate Specificity

Substances

  • Algal Proteins
  • Carbon Dioxide
  • Ribulose-Bisphosphate Carboxylase
  • Oxygen

Associated data

  • PDB/2V63
  • PDB/2V67
  • PDB/2V68
  • PDB/2V69
  • PDB/2V6A