U.S. flag

An official website of the United States government

Format

Send to:

Choose Destination

SRX1024542: GSM1682554: Induced 8 Days (by FICB); Mus musculus; RNA-Seq
1 ILLUMINA (Illumina HiSeq 2000) run: 11.8M spots, 3G bases, 1.4Gb downloads

Submitted by: Gene Expression Omnibus (GEO)
Study: Global transcriptional analysis of mouse fibroblasts, chemically-induced neurons (neuron-like cells) from mouse fibroblasts and mouse primary cortical neurons by RNA-seq
show Abstracthide Abstract
Recently, direct reprogramming between divergent lineages has been achieved by introducing cell-fate-determining transcription factors. This progress may provide alternative cell resources for drug discovery and regenerative medicine. However, the genetic manipulation may limit the future application of these approaches. In this study, we identified a novel small-molecule cocktail that directly converted fibroblasts into neuronal cell fate with a high yield up after 16-days of induction. After a further maturation stage, these chemically-induced neurons (CiNs) possessed neuron-specific expression patterns, generated action potentials and formed functional synapses. Gene expression profiling revealed the activation of neuronal specific genes in the early stage of small molecule treatment. Overall, our findings prove the principle of chemically-induced direct reprogramming of somatic cell fates across germ layers without genetic manipulation, and show that cell fate can be manipulated through disrupting initial cell program and activating target cell master genes with pure chemicals. Overall design: Total of 15 samples were analyzed, including mouse fibroblasts, mouse cortical primary neurons and chemically-induced neurons by different duration of chemical induction (Day0, Day4, Day8, Day19) and different small-molecule cocktail (FICB, FICB-1)
Sample: Induced 8 Days (by FICB)
SAMN03656190 • SRS936221 • All experiments • All runs
Organism: Mus musculus
Library:
Instrument: Illumina HiSeq 2000
Strategy: RNA-Seq
Source: TRANSCRIPTOMIC
Selection: cDNA
Layout: PAIRED
Construction protocol: Total RNA from each sample was isolated using the RNeasy Plus Mini Kit (QIAGEN). A total amount of 3 μg RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext®Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) following manufacturer’s recommendations and index codes were added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer (5X). First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNaseH-). Second strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA fragments, NEBNext Adaptor with hairpin loop structure were ligated to prepare for hybridization. In order to select cDNA fragments of preferentially 150~200bp in length, the library fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 μl USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at 95 °C before PCR. Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X) Primer. At last, PCR products were purified (AMPure XP system) and library quality was assessed on the Agilent Bioanalyzer 2100 system.
Experiment attributes:
GEO Accession: GSM1682554
Links:
External link:
Runs: 1 run, 11.8M spots, 3G bases, 1.4Gb
Run# of Spots# of BasesSizePublished
SRR201781711,818,2083G1.4Gb2015-08-13

ID:
1485502

Supplemental Content

Search details

See more...

Recent activity