Clinical Description
Generalized arterial calcification of infancy (GACI) can result either from ENPP1 deficiency (ENPP1-GACI), or from ABCC6 deficiency (ABCC6-GACI) associated with biallelic pathogenic variants in ENPP1 or ABCC6 respectively. To date, around 250 individuals have been identified with GACI [Authors, personal observation]. The following description of the phenotypic features associated with this condition is based on these individuals.
Table 2.
GACI: Frequency of Select Features
View in own window
Feature | % of Persons with Feature | Comment |
---|
Arterial calcification | 88%-95% | Most common sites: aorta, pulmonary, coronary, renal |
Extravascular calcification | 50%-60% | Most common site: hip; sternoclavicular joint commonly involved |
Pseudoxanthoma elasticum findings | ~20% | Onset of skin findings in childhood; onset of retinal findings more commonly in adulthood |
Hypophosphatemic rickets / osteomalacia | >90% (ENPP1-GACI only) | Mediated by FGF23 |
Nephrocalcinosis | 50% (ENPP1-GACI mainly) | More commonly a complication of rickets/osteomalacia treatment |
Cervical spine fusion | ~25% (ENPP1-GACI only) | Affects posterior elements |
Hearing loss | 50%-75% (ENPP1-GACI only) | Variable age of onset |
Presentation
A review of published information on 161 individuals with GACI [Chong & Hutchins 2008] identified the following:
A bimodal age of presentation. 48% had early onset (i.e., in utero or within the first week of life) and 52% had late onset (median age three months).
In early-onset GACI, the most common initial findings were fetal distress (46%), heart failure (44%), polyhydramnios (38%), hypertension (33%), respiratory distress (30%), hydrops fetalis (28%), edema (24%), "visceral" effusions (20%), cyanosis (22%), cardiomegaly (17%), and ascites (13%).
In late-onset GACI, the most common presenting findings were respiratory distress (66%), cyanosis (43%), refusal to feed (34%), heart failure (29%), vomiting (24%), irritability (21%), failure to thrive (17%), fever (16%), hypertension (12%), and edema (7%).
Males and females were affected with similar frequency: 43% of those with early-onset GACI and 48% of late-onset GACI were female.
For individuals with fetal involvement, arterial calcifications are commonly detected at the time of prenatal ultrasound (most commonly in the third trimester, but imaging diagnosis in the second trimester is also possible). For infants with postnatal late-onset GACI, the presenting findings (respiratory distress, cyanosis, refusal to feed, heart failure) lead to imaging studies such as echocardiography and/or CT, and the detection of arterial calcification suggests the diagnosis.
Arterial Calcification
Autopsy studies (reviewed by Chong & Hutchins [2008]) noted that the most commonly calcified arteries in early-onset GACI were hepatic (81%), aorta (80%), pulmonary (67%), coronary (53%), and renal (39%). The most commonly calcified arteries in late-onset GACI were coronary (88%), renal (55%), pulmonary (49%), aorta (36%), adrenal (34%), splenic (31%), pancreatic (28%), and mesenteric (26%).
In a cohort of long-term survivors of GACI, the most common sites of arterial calcification were the aorta (14/16), and renal (11/16), mesenteric (11/16), coronary (10/16), iliac (10/16), and pulmonary (10/16) arteries [Ferreira et al 2021a].
Although generally spared, the cerebral arteries have been involved in several reported individuals [Glatz et al 2006, van der Sluis et al 2006]; presenting manifestations can thus include seizures [Galletti et al 2011], strokes [Van Dyck et al 1989], or recurrent transient ischemic attacks due to cerebrovascular insufficiency [Thomas et al 1990]. Cystic encephalomalacia is rarely reported [Galletti et al 2011, Nitschke et al 2012].
Peripheral arterial calcifications can present with decreased peripheral pulses; in exceptional cases, gangrene has occurred in the distal extremities [Witzleben 1970, Lussier-Lazaroff & Fletcher 1973], likely caused by a combination of vessel luminal narrowing and left ventricular systolic dysfunction.
Pulmonary hypertension refractory to medical therapy is possible [Farquhar et al 2005, Shaireen et al 2013].
Spontaneous resolution of calcification has been reported in several individuals [Sholler et al 1984, Ciana et al 2006]. In those without continued evidence of calcification, arterial stenoses associated with intimal thickening have been observed [Marrott et al 1984, Thiaville et al 1994, Nitschke et al 2012]. Generalized arterial stenoses without prior evidence of arterial calcification are also possible [Nitschke et al 2012, Ferreira et al 2021a].
Arterial calcifications or intimal proliferation may also explain the high frequency of recurrent pregnancy loss (≥4 miscarriages per family in 25% vs in 1%-2% in the general population) and hematochezia (15% vs 2% in the general population) [Ferreira et al 2021a].
Pseudoxanthoma Elasticum (PXE) Findings
Individuals with GACI can manifest PXE-like changes; these were seen in four of 20 survivors, with onset between ages two and 43 years [Ferreira et al 2021a]. Skin findings typically manifest during childhood, while retinal findings (peau d'orange, angioid streaks, choroidal neovascularization with subsequent retinal hemorrhage) commonly do not appear until adulthood. However, typical retinal findings of PXE were reported in a girl age four years with ENPP1 deficiency [Freychet et al 2014], indicating that earlier onset of ocular complications is possible.
It has been speculated that children with GACI and findings of PXE were not reported until recently because most died before they developed typical signs of PXE, and many features of PXE (e.g., angioid streaks and skin lesions) are frequently overlooked in the clinical examination of individuals with GACI [Nitschke & Rutsch 2012]. See Pseudoxanthoma Elasticum.
Hypophosphatemic Rickets / Osteomalacia
Individuals with GACI caused by pathogenic variants in ENPP1 who survive the first six months of life (i.e., the critical period) can develop bone deformities, hypophosphatemia, hyperphosphaturia, and elevated alkaline phosphatase, with all the clinical manifestations of autosomal recessive hypophosphatemic rickets type 2 (ARHR2; see Genetically Related Disorders). Conversely, several individuals with ARHR2 have had asymptomatic undiagnosed vascular involvement. Thus, ARHR2 and GACI represent a phenotypic spectrum.
The average age for the development of hypophosphatemia was 1.6 years [Ferreira et al 2021a]. In a cohort of surviving individuals with ENPP1 deficiency (mean age 11.7 years), 11 of 16 (69%) had already developed rickets, with a Kaplan-Meier estimate that almost all individuals would develop rickets/osteomalacia by age 14 years [Ferreira et al 2021a]. This form of rickets/osteomalacia is mediated by FGF23, and can lead to painful calcification of the entheses (insertion sites of ligaments and tendons) in adulthood [Kotwal et al 2020, Ferreira et al 2021a].
There are no reports of hypophosphatemia in individuals with GACI caused by pathogenic variants of ABCC6, although one individual in the series of Nitschke et al [2012] had GACI with hypophosphatemic rickets and was heterozygous for an ABCC6 pathogenic variant.
Nephrocalcinosis
Bilateral medullary nephrocalcinosis was seen in five of ten individuals with ENPP1 deficiency who received standard treatment for hypophosphatemic rickets/osteomalacia, while it was not detected in any of seven individuals who were naïve to treatment. Cortical nephrocalcinosis can be seen in the absence of treatment. While medullary nephrocalcinosis is likely a complication from treatment of rickets/osteomalacia (and thus seen only in ENPP1 deficiency), cortical nephrocalcinosis likely represents a consequence of ischemia (and can be seen either with ENPP1 or ABCC6 deficiency) [Ferreira et al 2021b].
Cervical Spine Fusion
Fusion of the posterior elements of the cervical spine (posterior vertebral bodies, articular processes, laminae) was seen in four of 16 individuals with ENPP1 deficiency [Ferreira et al 2021a].
Hearing Loss
In GACI, hearing loss can be conductive, sensorineural, or mixed, and can present as early as in the neonatal period [Brachet et al 2014]. It developed in ten of 16 survivors (63%) with ENPP1-GACI at a median age of 3.7 years, with a Kaplan-Meier estimate of developing hearing loss of 20% by age two years, 50% by four years, and 75% over a lifetime [Ferreira et al 2021a].
Sensorineural hearing loss is presumably due to calcifications of the arteries supplying the inner ear [Lorenz-Depiereux et al 2010], while conductive hearing loss is due to stapedovestibular ankylosis [Nitschke et al 2012, Freychet et al 2014].
Development
Although cognitive development has not been formally assessed in a cohort of individuals with GACI, the majority appear to have normal development. However, the authors are aware of a few individuals with severe global developmental delay in the setting of prior strokes or encephalomalacia. In individuals with periarticular calcifications, motor milestones can be delayed due to pain around the affected joints [Authors, personal observation].
Variability
In one family in which the father and son were homozygous for the same ENPP1 pathogenic variant, the father presented with hypophosphatemia and rickets and later developed an aortic root dissection at age 28 years, while the son had GACI and hypophosphatemia [Lorenz-Depiereux et al 2010]. Sibs harboring the same pathogenic variants have been reported to have markedly different clinical courses [Ferreira et al 2021a].
Prognosis
In a series of 55 children, the mortality rate at age six months was 30 of 55 (55%) despite intensive therapy [Rutsch et al 2008]. Only one individual died after age six months; thus, the mortality rate was markedly decreased in those who survived the first few months of life. Causes of death were myocardial infarction, congestive heart failure, persistent arterial hypertension, or multiorgan failure.
Long-term survivors, with several in their 20s, include twins age 21 years [Rutsch et al 2008], a woman age 22 years [Marrott et al 1984], individuals age 25 and 26 years at last follow up [Ferreira et al 2021a], and a woman age 37 years [Authors, personal observation]. The oldest individual with ENPP1 deficiency reported to date is a woman age 62 years [Saito et al 2011].
Bisphosphonate treatment was associated with survival beyond infancy in 11 of 17 individuals, while 18 of 26 individuals not treated with bisphosphonates died in infancy [Rutsch et al 2008] (see Treatment of Manifestations). It remains unclear whether bisphosphonate use improves survival [Authors, personal observation].