NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE153665 Query DataSets for GSE153665
Status Public on Feb 12, 2021
Title Single-nuclei RNA sequencing of HVC and RA in zebra finches
Organism Taeniopygia guttata
Experiment type Expression profiling by high throughput sequencing
Summary The evolution of the six-layered neocortex is often credited with an increased capacity for complex behaviors and cognition in humans and other mammals. However, birds, despite lacking a laminated neocortex, display complex and non-instinctual behaviors including vocal learning, tool use, and problem-solving1,2. The evolution of brain circuits and cell-types supporting advanced behavioral repertoires remains poorly understood. Here in songbirds, we use single-cell RNA-sequencing to characterize the molecular identities of cells in the song motor pathway, a pallial circuit with function and connectivity that has been likened to the mammalian neocortex1,2. We find that each song region contains different glutamatergic excitatory projection neurons but similar sets of GABAergic inhibitory interneurons, similar to patterns of neuronal diversity in mammals and reptiles3,4. Song motor pathway glutamatergic neurons have gene expression patterns similar to those described in neocortical projection neurons, but at the level of transcription factor expression, display stronger similarity to neurons in the ventral pallium. We observed multiple GABAergic neuron classes that are conserved across amniotes, yet the most abundant class strongly resembles a cell-class that in mammals is not found in the neocortex but is present in non-neocortical pallial regions3,4. Thus, although pallial song-control regions contain neurons with similar molecular profiles to neocortical neurons, these pallial areas have a regional identity distinct from neocortex, indicating that complex behaviors such as vocal learning have evolved through the use of different brain circuits under similar functional constraints.
 
Overall design We carried out single-nuclei RNA-sequencing of zebra finch HVC and RA. Multiple individuals were pooled within each library.
 
Contributor(s) Merullo DP, Konopka G, Roberts TF
Citation(s) 33574185
Submission date Jul 01, 2020
Last update date Feb 12, 2021
Contact name Genevieve Konopka
E-mail(s) gena@alum.mit.edu
Organization name UT Southwestern Medical Center
Department Neuroscience
Street address 5323 Harry Hines Blvd.
City Dallas
State/province TX
ZIP/Postal code 75390-9111
Country USA
 
Platforms (1)
GPL27119 Illumina NovaSeq 6000 (Taeniopygia guttata)
Samples (4)
GSM4649016 HVC_1
GSM4649017 HVC_2
GSM4649018 HVC_3
Relations
BioProject PRJNA643570
SRA SRP269622

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE153665_RAW.tar 83.9 Mb (http)(custom) TAR (of TXT)
SRA Run SelectorHelp
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap