|
Status |
Public on Dec 31, 2009 |
Title |
D. magna exposed to fluoranthene and pyrene - both as single compounds and binary mixtures |
Organism |
Daphnia magna |
Experiment type |
Expression profiling by array
|
Summary |
Daphnia are an important and widely studied model species in ecological and toxicological studies throughout the world and an official (OECD) recommended test organism. Their small size, wide distribution and easy growth conditions make this an organism ideal for functional genomics based studies, including metabolic profiling and transcriptomics. In this study we used an integrated systems approach in which transcriptomic, metabolomic and energetic responses of juvenile (4 days old) daphnids were evaluated in response to exposure to two poly aromatic hydrocarbons (pyrene and fluoranthene) and binary mixtures thereof. In addition, these responses were linked to responses measured during chronic experiments (21 days) assessing survival, growth and reproductive traits. Custom Daphnia magna microarrays were used to assess transcriptomic changes. Hierarchical cluster analysis did not result in a clear distinction between the single compounds suggesting similar molecular modes of action. Cluster analysis with both the single compounds and the binary mixture treatments resulted in a separation of treatments based on differences in toxic ratios rather than component differences. Changes in the metabolic profiles of the organisms were investigated using Nuclear Magnetic Resonance spectroscopy and Gas and Liquid Chromatography Mass Spectrometry. These multivariate metabolomic datasets were analysed with Principal Components Analysis and Partial Least Squares Discriminant Analysis. The major metabolite changes responsible for the differences observed indicated a disturbance in aminosugar metabolism in all cases. The study demonstrates the potential of ’omics’ to provide screening tools for monitoring of the freshwater environment – in invertebrate species - which is reasonably rapid, cost-effective and has the potential to greatly increase the amount of information obtained from aquatic toxicology testing.
|
|
|
Overall design |
Two independent experiments were performed, each with two biological replicates. As a result, every treatment was measured four times with the exception of the two highest mixtures doses where we only had two available replicates. In general, a universal reference design was used in which the reference sample was a pool composed of aliquots from all samples. Dye-bias effects were accounted for by labeling two samples of every treatment with Cy3 and two with Cy5.
Exp1Rep1 (reference Cy3, sample Cy5); Exp1Rep2 (reference Cy5, sample Cy3); Exp2Rep1 (reference Cy5, sample Cy3) and Exp2Rep2 (reference Cy3, sample Cy5)
|
|
|
Contributor(s) |
Vandenbrouck T, Dom N, De Coen W |
Citation(s) |
20117838 |
|
Submission date |
Jun 28, 2009 |
Last update date |
Mar 21, 2012 |
Contact name |
Tine Vandenbrouck |
E-mail(s) |
tine.vandenbrouck@ua.ac.be
|
Phone |
+32 3 265 33 50
|
Fax |
+32 3 265 34 97
|
Organization name |
University of Antwerp
|
Department |
Department of Biology
|
Lab |
Ecophysiology, Biochemisty & Toxicology
|
Street address |
Groenenborgerlaan 171
|
City |
Antwerp |
ZIP/Postal code |
2020 |
Country |
Belgium |
|
|
Platforms (1) |
GPL8674 |
EBT UA Daphnia magna 1.2K version 1 |
|
Samples (50)
|
|
Relations |
BioProject |
PRJNA117573 |