NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE169198 Query DataSets for GSE169198
Status Public on Aug 20, 2021
Title Aegilops tauschii reference genome sequence Aet v5.0 including annotation of small RNAs and reannotation of protein-coding genes
Organism Aegilops tauschii
Experiment type Non-coding RNA profiling by high throughput sequencing
Summary Aegilops tauschii is the donor of the wheat D subgenome and an important genetic resource for wheat. The assembly of Ae. tauschii acc. AL8/78 reference genome sequence Aet v4.0 was therefore an important milestone for wheat biology and breeding. The combination of the > 4.2 Gb size of the Ae. tauschii genome and > 84% of recently evolved repeated sequences make sequencing this genome challenging. Here, we report further advances in the development of the Ae. tauschii acc. AL8/78 genome sequence. Two new genome-wide optical maps were constructed and employed in the revision of pseudomolecules and estimations of gap lengths. Gaps were closed with contigs of single-molecule Pacific Biosciences reads. The number of gaps in Aet v5.0 decreased by 38,899 compared to Aet v4.0. Transposable elements and protein-coding genes were reannotated. The number of high-confidence genes was reduced from 38,886 in Aet v4.0 to 32,980 in Aet v5.0. A nonredundant set of 478 biologically important genes including many of known function in wheat was manually annotated. Sixty-one microRNA precursor and 60 phasiRNA loci were discovered, annotated, and their expression was characterized. Also characterized was expression of other small RNAs, such as hc-siRNAs and tRFs. This upgraded genome sequence will facilitate the use of Ae. tauschii in wheat breeding and biological research. Aegilops tauschii is the donor of the wheat D subgenome and an important genetic resource for wheat. The assembly of Ae. tauschii acc. AL8/78 reference genome sequence Aet v4.0 was therefore an important milestone for wheat biology and breeding. The combination of the > 4.2 Gb size of the Ae. tauschii genome and > 84% of recently evolved repeated sequences make sequencing this genome challenging. Here, we report further advances in the development of the Ae. tauschii acc. AL8/78 genome sequence. Two new genome-wide optical maps were constructed and employed in the revision of pseudomolecules and estimations of gap lengths. Gaps were closed with contigs of single-molecule Pacific Biosciences reads. The number of gaps in Aet v5.0 decreased by 38,899 compared to Aet v4.0. Transposable elements and protein-coding genes were reannotated. The number of high-confidence genes was reduced from 38,886 in Aet v4.0 to 32,980 in Aet v5.0. A nonredundant set of 478 biologically important genes including many of known function in wheat was manually annotated. Sixty-one microRNA precursor and 60 phasiRNA loci were discovered, annotated, and their expression was characterized. Also characterized was expression of other small RNAs, such as hc-siRNAs and tRFs. This upgraded genome sequence will facilitate the use of Ae. tauschii in wheat breeding and biological research. Aegilops tauschii is the donor of the wheat D subgenome and an important genetic resource for wheat. The assembly of Ae. tauschii acc. AL8/78 reference genome sequence Aet v4.0 was therefore an important milestone for wheat biology and breeding. The combination of the > 4.2 Gb size of the Ae. tauschii genome and > 84% of recently evolved repeated sequences make sequencing this genome challenging. Here, we report further advances in the development of the Ae. tauschii acc. AL8/78 genome sequence. Two new genome-wide optical maps were constructed and employed in the revision of pseudomolecules and estimations of gap lengths. Gaps were closed with contigs of single-molecule Pacific Biosciences reads. The number of gaps in Aet v5.0 decreased by 38,899 compared to Aet v4.0. Transposable elements and protein-coding genes were reannotated. The number of high-confidence genes was reduced from 38,886 in Aet v4.0 to 32,980 in Aet v5.0. A nonredundant set of 478 biologically important genes including many of known function in wheat was manually annotated. Sixty-one microRNA precursor and 60 phasiRNA loci were discovered, annotated, and their expression was characterized. Also characterized was expression of other small RNAs, such as hc-siRNAs and tRFs. This upgraded genome sequence will facilitate the use of Ae. tauschii in wheat breeding and biological research.
 
Overall design 6 Small RNA libraries from 4 different tissues were sequenced and analyzed based on improved genome reference. No replicates were included in this work.
 
Contributor(s) Baldrich P, Meyers B, Wang L, Dvorak J
Citation(s) 34515796
Submission date Mar 18, 2021
Last update date Jan 07, 2022
Contact name Patricia Baldrich Gonzalez
E-mail(s) pbaldrich@ucdavis.edu
Organization name University of California - Davis
Department Meyers Lab
Lab Meyers Lab
Street address 451 Health Sciences Dr., Davis, CA 95616
City Davis
State/province CA
ZIP/Postal code 95616
Country USA
 
Platforms (1)
GPL26494 Illumina HiSeq 2500 (Aegilops tauschii)
Samples (6)
GSM5182808 Seedlings leaves
GSM5182809 Mature Leaves
GSM5182810 Mature Leaves2
Relations
BioProject PRJNA715569
SRA SRP311316

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE169198_RAW.tar 383.2 Mb (http)(custom) TAR (of TXT)
SRA Run SelectorHelp
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap