NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE182616 Query DataSets for GSE182616
Status Public on Oct 31, 2021
Title Early Transcriptomic Response to Burn injury: Severe Burns are Associated with Immune Pathway Shutdown
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Burn injury induces a systemic hyperinflammatory response with detrimental side effects. Studies have described the biochemical changes induced by severe burns, but the transcriptome response is not well characterized. The goal of this work is to characterize the blood transcriptome after burn injury. Burn patients presenting to a regional center between 2012-2017 were prospectively enrolled. Blood was collected on admission and at predetermined time points (hours 2, 4, 8, 12, 24). RNA was isolated and transcript levels were measured with a gene expression microarray. To identify differentially regulated genes (FDR≤0.1) by burn injury severity, patients were grouped by total body surface area (TBSA) above or below 20% and statistically enriched pathways were identified. Sixty-eight patients were analyzed, most patients were male with a median age of 41 (IQR, 30.5-58.5) years, and TBSA of 20% (11-34%). Thirty-five patients had %TBSA injury ≥20%, and this group experienced greater mortality (26% vs. 3%, p=0.008). Comparative analysis of genes from patients with </≥20% TBSA revealed 1505, 613, 380, 63, 1357, and 954 differentially expressed genes at hours 0, 2, 4, 8, 12 and 24 respectively. Pathway analysis revealed an initial upregulation in several immune/inflammatory pathways within the ≥20% TBSA groups followed by shutdown. Severe burn injury is associated with an early proinflammatory immune response followed by shutdown of these pathways. Examination of the immunoinflammatory response to burn injury through differential gene regulation and associated immune pathways by injury severity may identify mechanistic targets for future intervention.
 
Overall design Burn patients presenting to a regional center between 2012-2017 were prospectively enrolled. Blood was collected on admission and at predetermined time points (hours 2, 4, 8, 12, 24). RNA was isolated and transcript levels were measured with a gene expression microarray. patients were grouped by total body surface area (TBSA) above or below 20% and statistically enriched pathways were identified. Sixty-eight patients were analyzed, most patients were male with a median age of 41 (IQR, 30.5-58.5) years, and TBSA of 20% (11-34%).
 
Contributor(s) Gautam A, Yang R, Miller S, Hammamieh R, Carney BC, Keyloun JW
Citation(s) 34791339
Submission date Aug 23, 2021
Last update date Jan 30, 2022
Contact name Ruoting Yang
E-mail(s) ruoting@gmail.com
Organization name WRAIR
Department CMPN
Lab MRSB
Street address 503 Robert Grant Ave
City Silver Spring
State/province MD
ZIP/Postal code 20910
Country USA
 
Platforms (1)
GPL17077 Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Probe Name version)
Samples (785)
GSM5532520 0822.002.900_hr2
GSM5532521 0822.003.900_hr4
GSM5532522 0822.004.900_hr8
Relations
BioProject PRJNA757018

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE182616_RAW.tar 4.5 Gb (http)(custom) TAR (of TXT)
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap
External link. Please review our privacy policy.