NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE192815 Query DataSets for GSE192815
Status Public on Oct 08, 2022
Title Death and birth of transposable elements underlie subgenome convergent and divergent transcription in common wheat
Organism Triticum aestivum
Experiment type Genome binding/occupancy profiling by high throughput sequencing
Summary Common wheat (T. aestivum) converged three subgenomes adapted to different environments. The combinatorial interaction between transcription factors (TFs) and regulatory elements (REs) defines a regulatory circuit that underlies subgenome convergence and divergence. Compared to the relatively conserved gene composition across subgenomes, the intergenic regions with abundant REs is drastically diversified by almost complete TE turnovers, raising major questions regarding how subgenome convergent and divergent regulation is encoded in the highly diversified intergenic regions, and the impact of TE evolution on regulatory conservation and innovation. In the present study, we created genome-wide TF binding catalog to assemble an extensive wheat regulatory network comprising connections among 182 TFs. The different effects of ancient and recent TE insertions on regulatory specificity were observed. Subgenome asymmetric TE expansion is an important source of subgenome divergent TFBS, which help explain the vast occupancy difference across subgenomes. Interestingly, the ancient expansion of RLC_famc1.4-derived TFBS occurred in more than 25% triads promoters. A significant fraction of these TE-derived TFBS subjected to region-specific evolutionary selections, resulting in subgenome-balanced TF binding but unbalanced degeneration of flanking TE sequences. These TE-derived subgenome convergent and divergent regulation linked to subgenome conserved and diversified pathways, suggesting that TEs are an important regulatory driving force contributed to polyploid evolution. Overall, this study demonstrated the impact of TEs on shaping the plasticity and adaptation of common wheat, enriched the theories of TE-promoted transcriptional innovation from the evolutionary aspects of polyploid regulation since first reported by McClintock.
 
Overall design To elucidate the subgenome convergent and divergent regulation in common wheat, we performed DAP-seq to obtain a genome-wide binding profile of 182 TFs from a large spectrum of families.
 
Contributor(s) Zhang Y
Citation(s) 36376315
Submission date Dec 30, 2021
Last update date Nov 29, 2022
Contact name yijing zhang
E-mail(s) zhangyijing@fudan.edu.cn
Organization name Fudan University
Department Biochemistry
Lab Functional Epigenomics Group
Street address 2005 Songhu Road
City shanghai
ZIP/Postal code 200438
Country China
 
Platforms (1)
GPL25409 Illumina NovaSeq 6000 (Triticum aestivum)
Samples (194)
GSM5765941 Alfin-4D-1
GSM5765942 AP2-B
GSM5765943 AP2-D
Relations
BioProject PRJNA793259

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE192815_RAW.tar 27.8 Gb (http)(custom) TAR (of BED, BW)
SRA Run SelectorHelp
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap