|
|
GEO help: Mouse over screen elements for information. |
|
Status |
Public on Mar 24, 2010 |
Title |
Bioinformatic profiling of the transcriptional response of adult rat cardiomyocytes to distinct fatty acids |
Organism |
Rattus norvegicus |
Experiment type |
Expression profiling by array
|
Summary |
Diabetes mellitus, obesity, and dyslipidemia increase risk for cardiovascular disease, and expose the heart to high plasma fatty acid (FA) levels. Recent studies suggest that distinct FA species are cardiotoxic (e.g., palmitate), while others are cardioprotective (e.g., oleate), although the molecular mechanisms mediating these observations are unclear. The purpose of the present study was to investigate the differential effects of distinct FA species (varying carbon length and degree of saturation) on adult rat cardiomyocyte (ARC) gene expression. ARCs were initialy challenged with 0.4 mM octanoate (8:0), palmitate (16:0), stearate (18:0), oleate (18:1), or linoleate (18:2) for 24 h. Microarray analysis revealed differential regulation of gene expression by the distinct FAs; the order regarding the number of genes whose expression was influenced by a specific FA was octanoate (1,188) . stearate (740) . palmitate (590) . oleate (83) . linoleate (65). In general, cardioprotective FAs (e.g., oleate) increased expression of genes promoting FA oxidation to a greater extent than cardiotoxic FAs (e.g., palmitate), whereas the latter induced markers of endoplasmic reticulum and oxidative stress. Subsequent RT-PCR analysis revealed distinct time- and concentration-dependent effects of these FA species, in a gene-specific manner. For example, stearate- and palmitate-mediated ucp3 induction tended to be transient (i.e., initial high induction, followed by subsequent repression), whereas oleate-mediated induction was sustained. These findings may provide insight into why diets high in unsaturated FAs (e.g., oleate) are cardioprotective, whereas diets rich in saturated FAs (e.g., palmitate) are not.
|
|
|
Overall design |
Comparison of gene expression in adult cardiomyocytes from male Wistar rats following a fatty acid challenge. Isolated adult rat cardiomyocytes were cultured overnight in serum-free DMEM-containing laminin-ciated plates and challenged with 0.4 mM octanoate, palmitate, stearate, oleate, or linoleate for 24 h, after which RNA was isolated and utilized for gene expression analysis. All FAs were conjugated to defatted BSA, which was present in the culture medium at a final concentration of 1%. Control cells were cultured in the presence of 1% BSA alone.
|
|
|
Contributor(s) |
Lockridge JB, Sailors ML, Durgan DJ, Egbejimi O, Jeong WJ, Bray MS, Stanley WC, Young ME |
Citation(s) |
18387886 |
|
Submission date |
Mar 23, 2010 |
Last update date |
Jan 18, 2013 |
Contact name |
Molly Bray Bray |
E-mail(s) |
mbray@uab.edu
|
Phone |
205-975-7651
|
Fax |
205-934-8665
|
Organization name |
Univ of Alabama at Birmingham
|
Department |
Genetics
|
Lab |
KAUL-406
|
Street address |
720 20th Street S
|
City |
Birmingham |
State/province |
AL |
ZIP/Postal code |
35294 |
Country |
USA |
|
|
Platforms (1) |
|
Samples (46)
|
|
Relations |
BioProject |
PRJNA125773 |
Supplementary file |
Size |
Download |
File type/resource |
GSE21023_RAW.tar |
1.9 Mb |
(http)(custom) |
TAR |
GSE21023_non_normalized.txt.gz |
6.9 Mb |
(ftp)(http) |
TXT |
Processed data included within Sample table |
|
|
|
|
|