NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE221151 Query DataSets for GSE221151
Status Public on Dec 21, 2022
Title Beneficial and detrimental genes in the cellular response to replication arrest
Organism Bacillus subtilis subsp. subtilis
Experiment type Other
Summary DNA replication is essential for all living organisms. Several events can disrupt replication, including DNA damage (e.g., pyrimidine dimers, crosslinking) and so-called “roadblocks” (e.g., DNA-binding proteins or transcription). Bacteria have several well-characterized mechanisms for repairing damaged DNA and then restoring functional replication forks. However, little is known about the repair of stalled or arrested replication forks in the absence of chemical alterations to DNA. Using a library of random transposon insertions in Bacillus subtilis, we identified 35 genes that affect the ability of cells to survive exposure to an inhibitor that arrests replication elongation, but does not cause chemical alteration of the DNA. Genes identified include those involved in iron-sulfur homeostasis, cell envelope biogenesis, and DNA repair and recombination. In B. subtilis, and many bacteria, two nucleases (AddAB and RecJ) are involved in early steps in repairing replication forks arrested by chemical damage to DNA and loss of either nuclease causes increased sensitivity to DNA damaging agents. These nucleases resect DNA ends, leading to assembly of the recombinase RecA onto the single-stranded DNA. Notably, we found that disruption of recJ increased survival of cells following replication arrest, indicating that in the absence of chemical damage to DNA, RecJ is detrimental to survival. In contrast, and as expected, disruption of addA decreased survival of cells following replication arrest, indicating that AddA promotes survival. The different phenotypes of addA and recJ mutants appeared to be due to differences in assembly of RecA onto DNA. RecJ appeared to promote too much assembly of RecA filaments. Our results indicate that in the absence of chemical damage to DNA, RecA is dispensable for cells to survive replication arrest and that the stable RecA nucleofilaments favored by the RecJ pathway may lead to cell death by preventing proper processing of the arrested replication fork.
 
Overall design Identification of genes involved in survival of treatment with the DNA replication inhibitor HPUra (6-(p-hydroxyphenylazo)-uracil) using a transposon insertion library
 
Contributor(s) Schons-Fonseca L, Lazova MD, Smith JL, Anderson ME, Grossman AD
Citation(s) 36574412
Submission date Dec 16, 2022
Last update date Jan 24, 2023
Contact name Alan Grossman
E-mail(s) adg@mit.edu
Organization name MIT
Department Biology
Street address 31 Ames St.
City Cambridge
State/province MA
ZIP/Postal code 02139
Country USA
 
Platforms (1)
GPL32956 Illumina HiSeq 2000 (Bacillus subtilis subsp. subtilis)
Samples (10)
GSM6846372 control-0h
GSM6846373 control-1h
GSM6846374 control-2h
Relations
BioProject PRJNA913123

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE221151_RAW.tar 3.9 Mb (http)(custom) TAR (of WIG)
SRA Run SelectorHelp
Raw data are available in SRA
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap