NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE261817 Query DataSets for GSE261817
Status Public on Apr 25, 2024
Title Gene-expression profiling of individuals resilient to Alzheimer's disease reveals higher expression of genes related to metallothionein and mitochondrial processes and no changes in the unfolded protein response
Organism Homo sapiens
Experiment type Expression profiling by high throughput sequencing
Summary Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer’s disease (AD). This phenomenon has been referred to as ‘resilience’. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n=11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.
 
Overall design RNA was isolated from the grey matter in the superior frontal gyrus.
 
Contributor(s) de Vries LE, Jongejan A, Monteiro Fortes J, Balesar R, Rozemuller AJ, Moerland PD, Huitinga I, Swaab DF, Verhaagen J
Citation(s) 38664739
Submission date Mar 18, 2024
Last update date May 17, 2024
Contact name Luuk Elard de Vries
Organization name Netherlands Institute for Neuroscience
Department Neuroregeneration
Street address Meibergdreef 47
City Amsterdam
ZIP/Postal code 1105 BA
Country Netherlands
 
Platforms (1)
GPL24676 Illumina NovaSeq 6000 (Homo sapiens)
Samples (35)
GSM8152494 AD 1
GSM8152495 AD 2
GSM8152496 AD 3
Relations
BioProject PRJNA1089147

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE261817_countmatrix.txt.gz 1.5 Mb (ftp)(http) TXT
SRA Run SelectorHelp
Raw data are available in SRA

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap