GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
Series GSE28193 Query DataSets for GSE28193
Status Public on Mar 31, 2012
Title Honeys Inhibit Virulence and Biofilm Formation in Enterohaemorrhagic Escherichia coli O157:H7, but Do not Harm Commensal Escherichia coli K-12 Biofilm
Organism Escherichia coli
Experiment type Expression profiling by array
Summary Honey has been widely used against bacterial infection for centuries. Previous studies suggested that honeys in high concentrations inhibited bacterial growth due to the presence of anti-microbial compounds, such as methylglyoxal, hydrogen peroxide, and peptides. In this study, we found that three honeys (acacia, clover, and polyfloral) in a low concentration as below as 0.5% (v/v) significantly suppress virulence and biofilm formation in enterohemorrhagic E. coli O157:H7 affecting the growth of planktonic cells while these honeys do not harm commensal E. coli K-12 biofilm formation. Transcriptome analyses show that honeys (0.5%) markedly repress quorum sensing genes (e.g., AI-2 import and indole biosynthesis), virulence genes (e.g., LEE genes), and curli genes (csgBAC). We found that glucose and fructose in honeys are key compounds to reduce the biofilm formation of E. coli O157:H7 via suppressing curli production, but not that of E. coli K-12. Additionally, we observed the temperature-dependent response of honeys and glucose on commensal E. coli K-12 biofilm formation; honey and glucose increase E. coli K-12 biofilm formation at 37°C, while they decrease E. coli K-12 biofilm formation at 26°C. These results suggest that honey can be a practical tool for reducing virulence and colonization of the pathogenic E. coli O157:H7, while honeys do not harm commensal E. coli community in the human.
Overall design For the microarray experiments, E. coli O157:H7 EDL933 was inoculated in 250 ml of LB in 1000 ml flasks with overnight cultures that were diluted at 1:100. Cells were shaken with 10g of glass wool at 100 rpm and 37°C for 7 hrs. Cells were immediately chilled with dry ice and 95% ethanol (to prevent RNA degradation) for 30 sec before centrifugation in 50 ml centrifuge tubes at 13,000 g for 2 min; cell pellets were frozen immediately with dry ice and stored -80°C. RNA was isolated using Qiagen RNeasy mini Kit (Valencia, CA, USA). To eliminate DNA contamination, Qiagen RNase-free DNase I was used to digest DNA. RNA quality was assessed by Agilent 2100 bioanalyser using the RNA 6000 Nano Chip (Agilent Technologies, Amstelveen, The Netherlands), and quantity was determined by ND-1000 Spectrophotometer (NanoDrop Technologies, Inc., DE, USA).
Contributor(s) Lee J, Lee J, Cho MH
Citation(s) 22047137
Submission date Mar 26, 2011
Last update date Mar 08, 2019
Contact name Jintae Lee
Phone 82-53-810-2533
Organization name Yeungnam University
Department Chemical engineering
Lab Biotechnology
Street address 214-1 Daedong
City Gyeongsan-Si
State/province Gyeongsangbuk-Do
ZIP/Postal code 712-749
Country South Korea
Platforms (1)
GPL3154 [E_coli_2] Affymetrix E. coli Genome 2.0 Array
Samples (2)
GSM698078 E. coli O157:H7 EDL933 in LB at 37oC for 7 hrs incubation
GSM698079 E. coli O157:H7 EDL933 in LB at 37oC for 7 hrs incubation with honey
BioProject PRJNA139625

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE28193_RAW.tar 1.9 Mb (http)(custom) TAR (of CEL, CHP)
Processed data included within Sample table
Processed data provided as supplementary file

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap