NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE34412 Query DataSets for GSE34412
Status Public on Jun 25, 2013
Title A Renewable Tissue Resource of Phenotypically Stable, Biologically and Ethnically Diverse, Patient-derived Human Breast Cancer Xenografts
Organism Homo sapiens
Experiment type Expression profiling by array
Summary Translational breast cancer research is hampered by difficulties in obtaining and studying primary human breast tissue, and by the lack of in vivo preclinical models that reflect patient tumor biology accurately. In an effort to overcome these limitations, we propagated a cohort of human breast tumors grown in the mammary fat pad of SCID/Beige and NOD/SCID/IL2?-receptor null (NSG) two relatively new immunocompromised mouse models, under a series of transplant conditions. Both models yielded stably transplantable xenografts relatively high rates compared with previously available immunocompromised mice. Xenograft lines were established directly from breast cancer patient samples, without intervening culture in vitro, using the epithelium-free mammary fat pad as the transplantation site. Of the conditions tested, xenograft take rate was highest in the presence of a low-dose estradiol pellet. Overall, 35 stably transplantable xenograft lines representing 27 patients were established, using pre-treatment, mid-treatment, and/or post-treatment samples. Most patients yielding xenografts were “triple-negative” (ER-PR-HER2-) (n=21). However, we were able to establish lines from three ER-PR-HER2+ patients, one ER+PR-HER2-, one ER+PR+HER2- and one “triple-positive” (ER+PR+HER2+) patient. Serially passaged xenografts show biological consistency with the tumor of origin at the histopathology level, and remarkable stability across multiple transplant generations at the genomic, transcriptomic, and proteomic levels. Of the 27 patients represented, xenografts derived from 13 patients showed metastasis to the mouse lung. These models thus serve as a renewable, quality-controlled tissue resource, and should prove useful for preclinical evaluation of experimental therapeutics.
 
Overall design reference x sample
 
Contributor(s) Zhang X, Prat A, Perou CM
Citation(s) 23737486
Submission date Dec 13, 2011
Last update date Jul 17, 2015
Contact name Charles M. Perou
E-mail(s) cperou@med.unc.edu
Organization name University of North Carolina at Chapel Hill
Department Professor of Genetics, and Pathology & Laboratory Medicine; Lineberger Comprehensive Cancer Center
Street address 12-044 Lineberger Comprehensive Cancer Center CB# 7295
City Chapel Hill
State/province NC
ZIP/Postal code 27599-7264
Country USA
 
Platforms (1)
GPL8269 UNC PerouLab 244K Custom Human Array version 5
Samples (60)
GSM847887 ML-5998-TG1
GSM847888 Baylor 2147 TG6
GSM847890 Baylor 2665A TG6
Relations
BioProject PRJNA149655

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary data files not provided
Processed data included within Sample table

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap