NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE49690 Query DataSets for GSE49690
Status Public on Aug 10, 2013
Title Bacteria- and IMD Pathway-Independent Immune Defenses against Plasmodium falciparum in Anopheles gambiae
Organism Anopheles gambiae
Experiment type Expression profiling by array
Summary The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. To examine the impact of P. falciparum infection on the mosquito midgut and carcass transcriptomes in the presence or absence of midgut bacteria, we used A. gambiae whole genome microarrays to compare the mRNA abundance of P. falciparum-infected and -naïve mosquitoes of antibiotic- and non-antibiotic treated cohorts. P. falciparum infection induced changes in the abundance of as many as 2,183 and 2,429 transcripts in whole mosquitoes belonging to a variety of functional groups in aseptic and septic mosquitoes. Ultimately, we were interested in identifying the genes involved in bacteria-independent anti-Plasmodium responses, and therefore we focused on transcripts displaying increased abundance in the parasite-infected aseptic midguts, placing a particular emphasis on those with predicted immune functions. Because of the central role of serine protease cascades in regulating insect immune defenses, we focused the remainder of our analysis on a clip-domain serine protease C2 (CLIPC2, AGAP004317) and a serine protease inhibitor 7 (SRPN7, AGAP007693) that were specifically upregulated in the parasite-infected, aseptic mosquito midgut. We showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense.
 
Overall design Aseptic and septic midguts and carcasses from P. falciparum-infected A. gambiae vs aseptic and septic midguts and carcasses from uninfected, blood-fed A. gambiae. 3 biological replicates and 1 pseudo-replicate per each array.
 
Contributor(s) Blumberg BJ, Trop S, Das S, Dimopoulos G
Citation(s) 24019865
Submission date Aug 09, 2013
Last update date Nov 11, 2013
Contact name George Dimopoulos
E-mail(s) gdimopo1@jhu.edu
Phone 443 28 70128
Organization name Johns Hopkins School of Public Health
Department Molecular Microbiology and Immunology
Street address 615 N. Wolfe Street
City Baltimore
State/province MD
ZIP/Postal code 21205
Country USA
 
Platforms (1)
GPL17550 Agilent-026185 AGTRAN2009 array
Samples (4)
GSM1204943 Pfalciparum Infected Aseptic Midgut
GSM1204944 Pfalciparum Infected Aseptic Carcass
GSM1204945 Pfalciparum Infected Septic Midgut
Relations
BioProject PRJNA214747

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE49690.xlsx.gz 867.5 Kb (ftp)(http) XLSX
GSE49690_RAW.tar 57.2 Mb (http)(custom) TAR (of TXT)
Processed data included within Sample table
Processed data are available on Series record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap