The Pacific oyster (Crassostrea gigas) is a kind of marine bivalve of great economic and ecological importance and is among the animals possessing the highest level of genome DNA variations. Despite large efforts made for the discovery of Pacific oyster SNPs in many research groups, challenge still remains as how to utilize SNPs in a high-throughput, transferable and economical manner. In the study, we constructed an oyster 190K SNP array with Affymetrix Axiom genotyping technology. A total of 190,420 SNPs were designed on the chip, which were selected from 54 M SNPs identified by re-sequencing of more than 400 Pacific oysters. Genotyping results from 96 wild oysters indicated that 133,984 (70.4%) SNPs were polymorphic and successfully converted on the chip. Carrying 133K polymorphic SNPs, the oyster 190K SNP array is the first high density SNP chip with the largest throughput currently in mollusc and is commercially available to the worldwide research community.
Overall design
A total of 96 Pacific oysters were genotyped according to the manufacturer's directions to assess the performance of the oyster SNP array. All DNA were extracted from mantle tissues using a standard phenol-chloroform method.