GTR Test Accession:
Help
GTR000603753.4
Last updated in GTR:
2024-05-14
View version history
GTR000603753.4,
last updated:
2024-05-14
GTR000603753.3,
last updated:
2024-04-15
GTR000603753.2,
last updated:
2023-03-30
GTR000603753.1,
registered in GTR:
2022-12-15
Last annual review date for the lab: 2024-05-28
LinkOut
At a Glance
Test purpose:
Help
Diagnosis
Conditions (26):
Help
Arrhythmogenic cardiomyopathy;
Arrhythmogenic right ventricular cardiomyopathy;
Autosomal dominant distal myopathy
more...
Genes (18):
Help
Methods (2):
Help
Molecular Genetics - Deletion/duplication analysis: Next-Generation (NGS)/Massively parallel sequencing (MPS); ...
Target population: Help
Providing a genetic evaluation for patients with a personal or …
Clinical validity:
Help
Not provided
Clinical utility:
Help
Establish or confirm diagnosis;
Predictive risk information for patient and/or family members
Ordering Information
Offered by:
Help
Test short name:
Help
ARVGG
Specimen Source:
Help
- Peripheral (whole) blood
- View specimen requirements
Who can order: Help
- Genetic Counselor
- Health Care Provider
- Licensed Dentist
- Licensed Physician
- Nurse Practitioner
- Physician Assistant
- Public Health Mandate
- Registered Nurse
Lab contact:
Help
Elyse Love, MS, CGC, Certified Genetic counselor, CGC, Genetic Counselor
gcmolgen@mayo.edu
1-800-533-1710
gcmolgen@mayo.edu
1-800-533-1710
Contact Policy:
Help
Laboratory can only accept contact from health care providers. Patients/families are encouraged to discuss genetic testing options with their health care provider.
How to Order:
Help
https://www.mayocliniclabs.com/test-catalog/Overview/617127#Specimen
Order URL
Order URL
Test development:
Help
Test developed by laboratory but exempt from FDA oversight (eg. NYS CLEP approved, offered within a hospital or clinic)
Informed consent required:
Help
Based on applicable state law
Pre-test genetic counseling required:
Help
Decline to answer
Post-test genetic counseling required:
Help
Decline to answer
Recommended fields not provided:
Test strategy
Conditions
Help
Total conditions: 26
Condition/Phenotype | Identifier |
---|
Test Targets
Genes
Help
Total genes: 18
Gene | Associated Condition | Germline or Somatic | Allele (Lab-provided) | Variant in NCBI |
---|
Methodology
Total methods: 2
Method Category
Help
Test method
Help
Instrument
Deletion/duplication analysis
Next-Generation (NGS)/Massively parallel sequencing (MPS)
Illumina NovaSeq 6000
Sequence analysis of the entire coding region
Next-Generation (NGS)/Massively parallel sequencing (MPS)
Illumina NovaSeq 6000
Clinical Information
Test purpose:
Help
Diagnosis
Clinical utility:
Help
Establish or confirm diagnosis
Predictive risk information for patient and/or family members
View citations (4)
- Bonne G, Leturcq F, Ben Yaou R. Emery-Dreifuss Muscular Dystrophy. 2004 Sep 29 [updated 2019 Aug 15]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. PMID: 20301609.
- Arrhythmogenic Right Ventricular Cardiomyopathy. Corrado D, et al. N Engl J Med. 2017;376(1):61-72. doi:10.1056/NEJMra1509267. PMID: 28052233.
- Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16(11):e301-e372. doi:10.1016/j.hrthm.2019.05.007. Epub 2019 May 09. PMID: 31078652.
- https://www.ncbi.nlm.nih.gov/books/NBK1436
Predictive risk information for patient and/or family members
View citations (4)
- Bonne G, Leturcq F, Ben Yaou R. Emery-Dreifuss Muscular Dystrophy. 2004 Sep 29 [updated 2019 Aug 15]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. PMID: 20301609.
- Arrhythmogenic Right Ventricular Cardiomyopathy. Corrado D, et al. N Engl J Med. 2017;376(1):61-72. doi:10.1056/NEJMra1509267. PMID: 28052233.
- Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16(11):e301-e372. doi:10.1016/j.hrthm.2019.05.007. Epub 2019 May 09. PMID: 31078652.
- https://www.ncbi.nlm.nih.gov/books/NBK1436
Target population:
Help
Providing a genetic evaluation for patients with a personal or family history suggestive of a hereditary form of arrhythmogenic cardiomyopathy.
Establishing a diagnosis of a hereditary form of arrhythmogenic cardiomyopathy.
View citations (4)
- Bonne G, Leturcq F, Ben Yaou R. Emery-Dreifuss Muscular Dystrophy. 2004 Sep 29 [updated 2019 Aug 15]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Amemiya A, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. PMID: 20301609.
- Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, . Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-24. doi:10.1038/gim.2015.30. Epub 2015 Mar 05. PMID: 25741868.
- Arrhythmogenic Right Ventricular Cardiomyopathy. Corrado D, et al. N Engl J Med. 2017;376(1):61-72. doi:10.1056/NEJMra1509267. PMID: 28052233.
- Towbin JA, McKenna WJ, Abrams DJ, Ackerman MJ, Calkins H, Darrieux FCC, Daubert JP, de Chillou C, DePasquale EC, Desai MY, Estes NAM, Hua W, Indik JH, Ingles J, James CA, John RM, Judge DP, Keegan R, Krahn AD, Link MS, Marcus FI, McLeod CJ, Mestroni L, Priori SG, Saffitz JE, Sanatani S, Shimizu W, van Tintelen JP, Wilde AAM, Zareba W. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm. 2019;16(11):e301-e372. doi:10.1016/j.hrthm.2019.05.007. Epub 2019 May 09. PMID: 31078652.
Variant Interpretation:
What is the protocol for interpreting a variation as a VUS?
Help
All detected variants are evaluated according to the most recent American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) recommendations. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
All detected variants are evaluated according to the most recent American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP) recommendations. Variants are classified based on known, predicted, or possible pathogenicity and reported with interpretive comments detailing their potential or known significance.
Are family members with defined clinical status recruited to assess significance of VUS without charge?
Help
Contact lab for details
Contact lab for details
Will the lab re-contact the ordering physician if variant interpretation changes?
Help
Not provided. The laboratory encourages health care providers to contact the laboratory at any time to learn how the status of a particular variant may have changed over time.
Not provided. The laboratory encourages health care providers to contact the laboratory at any time to learn how the status of a particular variant may have changed over time.
Research:
Is research allowed on the sample after clinical testing is complete?
Help
Research testing is only performed under IRB approved protocol with an opt-out policy in place.
Research testing is only performed under IRB approved protocol with an opt-out policy in place.
Recommended fields not provided:
Clinical validity,
Are family members with defined clinical status recruited to assess significance of VUS without charge?,
Will the lab re-contact the ordering physician if variant interpretation changes?,
Sample negative report,
Sample positive report
Technical Information
Test Procedure:
Help
Next-generation sequencing (NGS) and/or Sanger sequencing is performed to test for the presence of variants in coding regions and intron/exon boundaries of the genes analyzed, as well as some other regions that have known disease-causing variants. The human genome reference GRCh37/hg19 build was used for sequence read alignment. At least …
View more
Test Platform:
Other
Availability:
Help
Tests performed
Entire test performed in-house
Entire test performed in-house
Analytical Validity:
Help
At least 99% of the bases are covered at a read depth >30X. Sensitivity is estimated at >99% for single nucleotide variants, >94% for indels up to 39 base pairs, >95% for deletions up to 75 base pairs and insertions up to 47 base pairs.
Assay limitations:
Help
Clinical Correlations: Test results should be interpreted in the context of clinical findings, family history, and other laboratory data. Misinterpretation of results may occur if the information provided is inaccurate or incomplete. If testing was performed because of a clinically significant family history, it is often useful to first test …
View more
Proficiency testing (PT):
Is proficiency testing performed for this test?
Help
Yes
Method used for proficiency testing: Help
Platform PT performed
Description of internal test validation method: Help
This test was laboratory developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements
Yes
Method used for proficiency testing: Help
Platform PT performed
Description of internal test validation method: Help
This test was laboratory developed, and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements
VUS:
Software used to interpret novel variations
Help
Variants may be analyzed using any combination of the following: Alamut, REVEL, Polyphen-2, SIFT, AGVGD, MutationTaster, SpliceSiteFinder-like, MaxEntScan, NNSPLICE, GeneSplicer, SpliceAI, gene-specific online databases, ISCA, UCSC Genome Browser
Laboratory's policy on reporting novel variations Help
All novel alterations and copy number variants are evaluated for potential pathogenicity and included in the written report, accordingly.
Variants may be analyzed using any combination of the following: Alamut, REVEL, Polyphen-2, SIFT, AGVGD, MutationTaster, SpliceSiteFinder-like, MaxEntScan, NNSPLICE, GeneSplicer, SpliceAI, gene-specific online databases, ISCA, UCSC Genome Browser
Laboratory's policy on reporting novel variations Help
All novel alterations and copy number variants are evaluated for potential pathogenicity and included in the written report, accordingly.
Recommended fields not provided:
Test Confirmation,
Citations to support assay limitations,
Citations to support internal test validation method,
Citations for Analytical validity,
PT Provider,
Description of PT method,
Major CAP category, CAP category, CAP test list
Regulatory Approval
FDA Review:
Help
Category:
FDA exercises enforcement discretion
Additional Information
Reviews:
Clinical resources:
Consumer resources:
IMPORTANT NOTE:
NIH does not independently verify information submitted to GTR; it relies on submitters to provide information that is accurate and not misleading.
NIH makes no endorsements of tests or laboratories listed in GTR. GTR is not a substitute for medical advice.
Patients and consumers
with specific questions about a genetic test should contact a health care provider or a genetics professional.