Chromosome 1p36 deletion syndrome- MedGen UID:
- 334629
- •Concept ID:
- C1842870
- •
- Disease or Syndrome
The constitutional deletion of chromosome 1p36 results in a syndrome with multiple congenital anomalies and mental retardation (Shapira et al., 1997). Monosomy 1p36 is the most common terminal deletion syndrome in humans, occurring in 1 in 5,000 births (Shaffer and Lupski, 2000; Heilstedt et al., 2003).
See also neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH; 616975), which shows overlapping features and is caused by heterozygous mutation in the RERE gene (605226) on proximal chromosome 1p36.
See also Radio-Tartaglia syndrome (RATARS; 619312), caused by mutation in the SPEN gene (613484) on chromosome 1p36, which shows overlapping features.
Roifman syndrome- MedGen UID:
- 375801
- •Concept ID:
- C1846059
- •
- Disease or Syndrome
Roifman syndrome is a multisystem disorder characterized by growth retardation, spondyloepiphyseal dysplasia, retinal dystrophy, distinctive facial dysmorphism, and immunodeficiency (summary by de Vries et al., 2006).
3-methylglutaconic aciduria type 5- MedGen UID:
- 347542
- •Concept ID:
- C1857776
- •
- Disease or Syndrome
3-Methylglutaconic aciduria type V (MGCA5) is an autosomal recessive disorder characterized by the onset of dilated or noncompaction cardiomyopathy in infancy or early childhood. Many patients die of cardiac failure. Other features include microcytic anemia, growth retardation, mild ataxia, mild muscle weakness, genital anomalies in males, and increased urinary excretion of 3-methylglutaconic acid. Some patients may have optic atrophy or delayed psychomotor development (summary by Davey et al., 2006 and Ojala et al., 2012).
For a discussion of genetic heterogeneity of 3-methylglutaconic aciduria, see MGCA type I (250950).
Left ventricular noncompaction 1- MedGen UID:
- 349005
- •Concept ID:
- C1858725
- •
- Disease or Syndrome
Left ventricular noncompaction (LVNC) is characterized by numerous prominent trabeculations and deep intertrabecular recesses in hypertrophied and hypokinetic segments of the left ventricle (Sasse-Klaassen et al., 2004). The mechanistic basis is thought to be an intrauterine arrest of myocardial development with lack of compaction of the loose myocardial meshwork. LVNC may occur in isolation or in association with congenital heart disease. Distinctive morphologic features can be recognized on 2-dimensional echocardiography (Kurosaki et al., 1999). Noncompaction of the ventricular myocardium is sometimes referred to as spongy myocardium. Stollberger et al. (2002) commented that the term 'isolated LVNC,' meaning LVNC without coexisting cardiac abnormalities, is misleading, because additional cardiac abnormalities are found in nearly all patients with LVNC.
Genetic Heterogeneity of Left Ventricular Noncompaction
A locus for autosomal dominant left ventricular noncompaction has been identified on chromosome 11p15 (LVNC2; 609470).
LVNC3 (see 605906) is caused by mutation in the LDB3 gene (605906) on chromosome 10q23. LVNC4 (see 613424) is caused by mutation in the ACTC1 gene (102540) on chromosome 15q14. LVNC5 (see 613426) is caused by mutation in the MYH7 gene (160760) on chromosome 14q12. LVNC6 (see 601494) is caused by mutation in the TNNT2 gene (191045) on chromosome 1q32. LVNC7 (615092) is caused by mutation in the MIB1 gene (608677) on chromosome 18q11. LVNC8 (615373) is caused by mutation in the PRDM16 gene (605557) on chromosome 1p36. LVNC9 (see 611878) is caused by mutation in the TPM1 gene (191010) on chromosome 15q22. LVNC10 (615396) is caused by mutation in the MYBPC3 gene (600958) on chromosome 11p11.
LVNC can also occur as part of an X-linked disorder, Barth syndrome (302060), caused by mutation in the TAZ gene (300394) on chromosome Xq28.