U.S. flag

An official website of the United States government

We are planning the future of MedGen. Fill out this survey or email us at medgen_help@ncbi.nlm.nih.gov to tell us how it can work better for you.

Search results

Items: 1 to 20 of 43

1.

Down syndrome

Down syndrome, the most frequent form of mental retardation caused by a microscopically demonstrable chromosomal aberration, is characterized by well-defined and distinctive phenotypic features and natural history. It is caused by triplicate state (trisomy) of all or a critical portion of chromosome 21. [from OMIM]

MedGen UID:
4385
Concept ID:
C0013080
Disease or Syndrome
2.

Hirschsprung disease, susceptibility to, 1

Hirschsprung disease can occur in combination with other conditions, such as Waardenburg syndrome, type IV; Mowat-Wilson syndrome; or congenital central hypoventilation syndrome. These cases are described as syndromic. Hirschsprung disease can also occur without other conditions, and these cases are referred to as isolated or nonsyndromic.

There are two main types of Hirschsprung disease, known as short-segment disease and long-segment disease, which are defined by the region of the intestine lacking nerve cells. In short-segment disease, nerve cells are missing from only the last segment of the large intestine (colon). This type is most common, occurring in approximately 80 percent of people with Hirschsprung disease. For unknown reasons, short-segment disease is four times more common in men than in women. Long-segment disease occurs when nerve cells are missing from most of the large intestine and is the more severe type. Long-segment disease is found in approximately 20 percent of people with Hirschsprung disease and affects men and women equally. Very rarely, nerve cells are missing from the entire large intestine and sometimes part of the small intestine (total colonic aganglionosis) or from all of the large and small intestine (total intestinal aganglionosis).

Enteric nerves trigger the muscle contractions that move stool through the intestine. Without these nerves in parts of the intestine, the material cannot be pushed through, causing severe constipation or complete blockage of the intestine in people with Hirschsprung disease. Other signs and symptoms of this condition include vomiting, abdominal pain or swelling, diarrhea, poor feeding, malnutrition, and slow growth. People with this disorder are at risk of developing more serious conditions such as inflammation of the intestine (enterocolitis) or a hole in the wall of the intestine (intestinal perforation), which can cause serious infection and may be fatal.

Hirschsprung disease is an intestinal disorder characterized by the absence of nerves in parts of the intestine. This condition occurs when the nerves in the intestine (enteric nerves) do not form properly during development before birth (embryonic development). This condition is usually identified in the first two months of life, although less severe cases may be diagnosed later in childhood. [from MedlinePlus Genetics]

MedGen UID:
854827
Concept ID:
C3888239
Finding
3.

Bardet-Biedl syndrome 1

Bardet-Biedl syndrome is an autosomal recessive and genetically heterogeneous ciliopathy characterized by retinitis pigmentosa, obesity, kidney dysfunction, polydactyly, behavioral dysfunction, and hypogonadism (summary by Beales et al., 1999). Eight proteins implicated in the disorder assemble to form the BBSome, a stable complex involved in signaling receptor trafficking to and from cilia (summary by Scheidecker et al., 2014). Genetic Heterogeneity of Bardet-Biedl Syndrome BBS2 (615981) is caused by mutation in a gene on 16q13 (606151); BBS3 (600151), by mutation in the ARL6 gene on 3q11 (608845); BBS4 (615982), by mutation in a gene on 15q22 (600374); BBS5 (615983), by mutation in a gene on 2q31 (603650); BBS6 (605231), by mutation in the MKKS gene on 20p12 (604896); BBS7 (615984), by mutation in a gene on 4q27 (607590); BBS8 (615985), by mutation in the TTC8 gene on 14q32 (608132); BBS9 (615986), by mutation in a gene on 7p14 (607968); BBS10 (615987), by mutation in a gene on 12q21 (610148); BBS11 (615988), by mutation in the TRIM32 gene on 9q33 (602290); BBS12 (615989), by mutation in a gene on 4q27 (610683); BBS13 (615990), by mutation in the MKS1 gene (609883) on 17q23; BBS14 (615991), by mutation in the CEP290 gene (610142) on 12q21, BBS15 (615992), by mutation in the WDPCP gene (613580) on 2p15; BBS16 (615993), by mutation in the SDCCAG8 gene (613524) on 1q43; BBS17 (615994), by mutation in the LZTFL1 gene (606568) on 3p21; BBS18 (615995), by mutation in the BBIP1 gene (613605) on 10q25; BBS19 (615996), by mutation in the IFT27 gene (615870) on 22q12; BBS20 (619471), by mutation in the IFT172 gene (607386) on 9p21; BBS21 (617406), by mutation in the CFAP418 gene (614477) on 8q22; and BBS22 (617119), by mutation in the IFT74 gene (608040) on 9p21. The CCDC28B gene (610162) modifies the expression of BBS phenotypes in patients who have mutations in other genes. Mutations in MKS1, MKS3 (TMEM67; 609884), and C2ORF86 also modify the expression of BBS phenotypes in patients who have mutations in other genes. Although BBS had originally been thought to be a recessive disorder, Katsanis et al. (2001) demonstrated that clinical manifestation of some forms of Bardet-Biedl syndrome requires recessive mutations in 1 of the 6 loci plus an additional mutation in a second locus. While Katsanis et al. (2001) called this 'triallelic inheritance,' Burghes et al. (2001) suggested the term 'recessive inheritance with a modifier of penetrance.' Mykytyn et al. (2002) found no evidence of involvement of the common BBS1 mutation in triallelic inheritance. However, Fan et al. (2004) found heterozygosity in a mutation of the BBS3 gene (608845.0002) as an apparent modifier of the expression of homozygosity of the met390-to-arg mutation in the BBS1 gene (209901.0001). Allelic disorders include nonsyndromic forms of retinitis pigmentosa: RP51 (613464), caused by TTC8 mutation, and RP55 (613575), caused by ARL6 mutation. [from OMIM]

MedGen UID:
422452
Concept ID:
C2936862
Disease or Syndrome
4.

Metaphyseal chondrodysplasia, McKusick type

The cartilage-hair hypoplasia – anauxetic dysplasia (CHH-AD) spectrum disorders are a continuum that includes the following phenotypes: Metaphyseal dysplasia without hypotrichosis (MDWH). Cartilage-hair hypoplasia (CHH). Anauxetic dysplasia (AD). CHH-AD spectrum disorders are characterized by severe disproportionate (short-limb) short stature that is usually recognized in the newborn, and occasionally prenatally because of the short extremities. Other findings include joint hypermobility, fine silky hair, immunodeficiency, anemia, increased risk for malignancy, gastrointestinal dysfunction, and impaired spermatogenesis. The most severe phenotype, AD, has the most pronounced skeletal phenotype, may be associated with atlantoaxial subluxation in the newborn, and may include cognitive deficiency. The clinical manifestations of the CHH-AD spectrum disorders are variable, even within the same family. [from GeneReviews]

MedGen UID:
67398
Concept ID:
C0220748
Congenital Abnormality; Disease or Syndrome
5.

Multiple endocrine neoplasia type 2A

Multiple endocrine neoplasia type 2 (MEN2) includes the following phenotypes: MEN2A, FMTC (familial medullary thyroid carcinoma, which may be a variant of MEN2A), and MEN2B. All three phenotypes involve high risk for development of medullary carcinoma of the thyroid (MTC); MEN2A and MEN2B involve an increased risk for pheochromocytoma; MEN2A involves an increased risk for parathyroid adenoma or hyperplasia. Additional features in MEN2B include mucosal neuromas of the lips and tongue, distinctive facies with enlarged lips, ganglioneuromatosis of the gastrointestinal tract, and a marfanoid habitus. MTC typically occurs in early childhood in MEN2B, early adulthood in MEN2A, and middle age in FMTC. [from GeneReviews]

MedGen UID:
9958
Concept ID:
C0025268
Neoplastic Process
6.

Smith-Lemli-Opitz syndrome

Smith-Lemli-Opitz syndrome (SLOS) is a congenital multiple-anomaly / cognitive impairment syndrome caused by an abnormality in cholesterol metabolism resulting from deficiency of the enzyme 7-dehydrocholesterol (7-DHC) reductase. It is characterized by prenatal and postnatal growth restriction, microcephaly, moderate-to-severe intellectual disability, and multiple major and minor malformations. The malformations include distinctive facial features, cleft palate, cardiac defects, underdeveloped external genitalia in males, postaxial polydactyly, and 2-3 syndactyly of the toes. The clinical spectrum is wide; individuals with normal development and only minor malformations have been described. [from GeneReviews]

MedGen UID:
61231
Concept ID:
C0175694
Disease or Syndrome
7.

Multiple endocrine neoplasia type 2B

Multiple endocrine neoplasia type 2 (MEN2) includes the following phenotypes: MEN2A, FMTC (familial medullary thyroid carcinoma, which may be a variant of MEN2A), and MEN2B. All three phenotypes involve high risk for development of medullary carcinoma of the thyroid (MTC); MEN2A and MEN2B involve an increased risk for pheochromocytoma; MEN2A involves an increased risk for parathyroid adenoma or hyperplasia. Additional features in MEN2B include mucosal neuromas of the lips and tongue, distinctive facies with enlarged lips, ganglioneuromatosis of the gastrointestinal tract, and a marfanoid habitus. MTC typically occurs in early childhood in MEN2B, early adulthood in MEN2A, and middle age in FMTC. [from GeneReviews]

MedGen UID:
9959
Concept ID:
C0025269
Neoplastic Process
8.

Mowat-Wilson syndrome

Mowat-Wilson syndrome (MWS) is characterized by distinctive facial features (widely spaced eyes, broad eyebrows with a medial flare, low-hanging columella, prominent or pointed chin, open-mouth expression, and uplifted earlobes with a central depression), congenital heart defects with predilection for abnormalities of the pulmonary arteries and/or valves, Hirschsprung disease or chronic constipation, genitourinary anomalies (particularly hypospadias in males), and hypogenesis or agenesis of the corpus callosum. Most affected individuals have moderate-to-severe intellectual disability. Speech is typically limited to a few words or is absent, with relative preservation of receptive language skills. Growth restriction with microcephaly and seizure disorder are also common. Most affected people have a happy demeanor and a wide-based gait that can sometimes be confused with Angelman syndrome. [from GeneReviews]

MedGen UID:
341067
Concept ID:
C1856113
Disease or Syndrome
9.

McKusick-Kaufman syndrome

McKusick-Kaufman syndrome (MKS) is characterized by the combination of postaxial polydactyly (PAP), congenital heart disease (CHD), and hydrometrocolpos (HMC) in females and genital malformations in males (most commonly hypospadias, cryptorchidism, and chordee). HMC in infants usually presents as a large cystic abdominal mass arising out of the pelvis, caused by dilatation of the vagina and uterus as a result of the accumulation of cervical secretions from maternal estrogen stimulation. HMC can be caused by failure of the distal third of the vagina to develop (vaginal agenesis), a transverse vaginal membrane, or an imperforate hymen. PAP is the presence of additional digits on the ulnar side of the hand and the fibular side of the foot. A variety of congenital heart defects have been reported including atrioventricular canal, atrial septal defect, ventricular septal defect, or a complex congenital heart malformation. [from GeneReviews]

MedGen UID:
184924
Concept ID:
C0948368
Disease or Syndrome
10.

Creatine transporter deficiency

The creatine deficiency disorders (CDDs), inborn errors of creatine metabolism and transport, comprise three disorders: the creatine biosynthesis disorders guanidinoacetate methyltransferase (GAMT) deficiency and L-arginine:glycine amidinotransferase (AGAT) deficiency; and creatine transporter (CRTR) deficiency. Developmental delay and cognitive dysfunction or intellectual disability and speech-language disorder are common to all three CDDs. Onset of clinical manifestations of GAMT deficiency (reported in ~130 individuals) is between ages three months and two years; in addition to developmental delays, the majority of individuals have epilepsy and develop a behavior disorder (e.g., hyperactivity, autism, or self-injurious behavior), and about 30% have movement disorder. AGAT deficiency has been reported in 16 individuals; none have had epilepsy or movement disorders. Clinical findings of CRTR deficiency in affected males (reported in ~130 individuals) in addition to developmental delays include epilepsy (variable seizure types and may be intractable) and behavior disorders (e.g., attention deficit and/or hyperactivity, autistic features, impulsivity, social anxiety), hypotonia, and (less commonly) a movement disorder. Poor weight gain with constipation and prolonged QTc on EKG have been reported. While mild-to-moderate intellectual disability is commonly observed up to age four years, the majority of adult males with CRTR deficiency have been reported to have severe intellectual disability. Females heterozygous for CRTR deficiency are typically either asymptomatic or have mild intellectual disability, although a more severe phenotype resembling the male phenotype has been reported. [from GeneReviews]

MedGen UID:
337451
Concept ID:
C1845862
Disease or Syndrome
11.

Central hypoventilation syndrome, congenital, 1, with or without Hirschsprung disease

Congenital central hypoventilation syndrome (CCHS) represents the extreme manifestation of autonomic nervous system dysregulation (ANSD) with the hallmark of disordered respiratory control. The age of initial recognition of CCHS ranges from neonatal onset (i.e., in the first 30 days of life) to (less commonly) later onset (from 1 month to adulthood). Neonatal-onset CCHS is characterized by apparent hypoventilation with monotonous respiratory rates and shallow breathing either during sleep only or while awake as well as asleep; ANSD including decreased heart rate beat-to-beat variability and sinus pauses; altered temperature regulation; and altered pupillary response to light. Some children have altered development of neural crest-derived structures (i.e., Hirschsprung disease, altered esophageal motility/dysphagia, and severe constipation even in the absence of Hirschsprung disease) and/or tumors of neural crest origin (neuroblastoma, ganglioneuroma, and ganglioneuroblastoma). Neurocognitive delay is variable, and possibly influenced by cyanotic breath holding, prolonged sinus pauses, need for 24-hour/day artificial ventilation, and seizures. Later-onset CCHS is characterized by alveolar hypoventilation during sleep and attenuated manifestations of ANSD. [from GeneReviews]

MedGen UID:
1794285
Concept ID:
C5562075
Disease or Syndrome
12.

Hirschsprung disease, susceptibility to, 2

The disorder described by Hirschsprung (1888) and known as Hirschsprung disease or aganglionic megacolon is characterized by congenital absence of intrinsic ganglion cells in the myenteric (Auerbach) and submucosal (Meissner) plexuses of the gastrointestinal tract. Patients are diagnosed with the short-segment form (S-HSCR, approximately 80% of cases) when the aganglionic segment does not extend beyond the upper sigmoid, and with the long-segment form (L-HSCR) when aganglionosis extends proximal to the sigmoid. Total colonic aganglionosis and total intestinal HSCR also occur (Amiel et al., 2008). Isolated HSCR appears to be of complex nonmendelian inheritance with low sex-dependent penetrance and variable expression according to the length of the aganglionic segment, suggestive of the involvement of one or more genes with low penetrance (Amiel et al., 2008). For a general description and a discussion of genetic heterogeneity of Hirschsprung disease (HSCR), see 142623. [from OMIM]

MedGen UID:
374002
Concept ID:
C1838564
Finding
13.

Duane-radial ray syndrome

SALL4-related disorders include Duane-radial ray syndrome (DRRS, Okihiro syndrome), acro-renal-ocular syndrome (AROS), and SALL4-related Holt-Oram syndrome (HOS) – three phenotypes previously thought to be distinct entities. DRRS is characterized by uni- or bilateral Duane anomaly and radial ray malformation that can include thenar hypoplasia and/or hypoplasia or aplasia of the thumbs, hypoplasia or aplasia of the radii, shortening and radial deviation of the forearms, triphalangeal thumbs, and duplication of the thumb (preaxial polydactyly). AROS is characterized by radial ray malformations, renal abnormalities (mild malrotation, ectopia, horseshoe kidney, renal hypoplasia, vesicoureteral reflux, bladder diverticula), ocular coloboma, and Duane anomaly. Rarely, pathogenic variants in SALL4 may cause clinically typical HOS (i.e., radial ray malformations and cardiac malformations without additional features). [from GeneReviews]

MedGen UID:
301647
Concept ID:
C1623209
Disease or Syndrome
14.

Waardenburg syndrome type 4A

Waardenburg syndrome type 4 (WS4), also known as Waardenburg-Shah syndrome, is an auditory-pigmentary syndrome characterized by pigmentary abnormalities of the hair, skin, and eyes, congenital sensorineural hearing loss, and Hirschsprung disease (reviews by Read and Newton, 1997 and Pingault et al., 2010). WS type 4A is caused by mutation in the EDNRB gene (131244). Clinical Variability of Waardenburg Syndrome Types 1-4 Waardenburg syndrome has been classified into 4 main phenotypes. Type I Waardenburg syndrome (WS1; 193500) is characterized by pigmentary abnormalities of the hair, including a white forelock and premature graying; pigmentary changes of the iris, such as heterochromia iridis and brilliant blue eyes; congenital sensorineural hearing loss; and 'dystopia canthorum.' WS type II (WS2) is distinguished from type I by the absence of dystopia canthorum. WS type III (WS3; 148820) has dystopia canthorum and is distinguished by the presence of upper limb abnormalities. WS type 4 has the additional feature of Hirschsprung disease (reviews by Read and Newton, 1997 and Pingault et al., 2010). Genetic Heterogeneity of Waardenburg Syndrome Type 4 Waardenburg syndrome type 4 is genetically heterogeneous. WS4B (613265) is caused by mutation in the EDN3 gene (131242) on chromosome 20q13, and WS4C (613266) is caused by mutation in the SOX10 gene (602229) on chromosome 22q13. [from OMIM]

MedGen UID:
341244
Concept ID:
C1848519
Disease or Syndrome
15.

Visceral myopathy 1

ACTG2 visceral myopathy is a disorder of smooth muscle dysfunction of the bladder and gastrointestinal system with phenotypic spectrum that ranges from mild to severe. Bladder involvement can range from neonatal megacystis and megaureter (with its most extreme form of prune belly syndrome) at the more severe end, to recurrent urinary tract infections and bladder dysfunction at the milder end. Intestinal involvement can range from malrotation, neonatal manifestations of microcolon, megacystis microcolon intestinal hypoperistalsis syndrome, and chronic intestinal pseudoobstruction (CIPO) in neonates at the more severe end to intermittent abdominal distention and functional intestinal obstruction at the milder end. Affected infants (with or without evidence of intestinal malrotation) often present with feeding intolerance and findings of non-mechanical bowel obstruction that persist after successful surgical correction of malrotation. Individuals who develop manifestations of CIPO in later childhood or adulthood often experience episodic waxing and waning of bowel motility. They may undergo frequent abdominal surgeries (perhaps related to malrotation or adhesions causing mechanical obstruction) resulting in resection of dilated segments of bowel, often becoming dependent on total parenteral nutrition (TPN). [from GeneReviews]

MedGen UID:
1785391
Concept ID:
C5542197
Disease or Syndrome
16.

Nager syndrome

Nager syndrome is the prototype for a group of disorders collectively referred to as the acrofacial dysostoses (AFDs), which are characterized by malformation of the craniofacial skeleton and the limbs. The major facial features of Nager syndrome include downslanted palpebral fissures, midface retrusion, and micrognathia, the latter of which often requires the placement of a tracheostomy in early childhood. Limb defects typically involve the anterior (radial) elements of the upper limbs and manifest as small or absent thumbs, triphalangeal thumbs, radial hypoplasia or aplasia, and radioulnar synostosis. Phocomelia of the upper limbs and, occasionally, lower-limb defects have also been reported. The presence of anterior upper-limb defects and the typical lack of lower-limb involvement distinguishes Nager syndrome from Miller syndrome (263750), another rare AFD; however, distinguishing Nager syndrome from other AFDs, including Miller syndrome, can be challenging (summary by Bernier et al., 2012). [from OMIM]

MedGen UID:
120519
Concept ID:
C0265245
Disease or Syndrome
17.

Piebald skin depigmentation

Piebaldism is a rare autosomal dominant trait characterized by the congenital absence of melanocytes in affected areas of the skin and hair. A white forelock of hair, often triangular in shape, may be the only manifestation, or both the hair and the underlying forehead may be involved. The eyebrows and eyelashes may be affected. Irregularly shaped white patches may be observed on the face, trunk, and extremities, usually in a symmetrical distribution. Typically, islands of hyperpigmentation are present within and at the border of depigmented areas (summary by Thomas et al., 2004). [from OMIM]

MedGen UID:
36361
Concept ID:
C0080024
Congenital Abnormality
18.

Waardenburg syndrome type 3

Waardenburg syndrome type 3 is an auditory-pigmentary syndrome characterized by pigmentary abnormalities of the hair, skin, and eyes; congenital sensorineural hearing loss; presence of 'dystopia canthorum,' the lateral displacement of the ocular inner canthi; and upper limb abnormalities (reviews by Read and Newton, 1997 and Pingault et al., 2010). WS type 3 is also referred to as 'Klein-Waardenburg syndrome' (Gorlin et al., 1976). Clinical Variability of Waardenburg Syndrome Types 1-4 Waardenburg syndrome has been classified into 4 main phenotypes. Type I Waardenburg syndrome (WS1; 193500) is characterized by pigmentary abnormalities of the hair, including a white forelock and premature graying; pigmentary changes of the iris, such as heterochromia iridis and brilliant blue eyes; congenital sensorineural hearing loss; and 'dystopia canthorum.' WS type II (WS2) is distinguished from type I by the absence of dystopia canthorum. WS type III has dystopia canthorum and is distinguished by the presence of upper limb abnormalities. WS type IV (WS4; 277580), also known as Waardenburg-Shah syndrome, has the additional feature of Hirschsprung disease (reviews by Read and Newton, 1997 and Pingault et al., 2010). [from OMIM]

MedGen UID:
86948
Concept ID:
C0079661
Disease or Syndrome
19.

Microphthalmia, syndromic 1

Microphthalmia-ankyloblepharon-intellectual disability syndrome is characterized by microphthalmia, ankyloblepharon and intellectual deficit. It has been described in seven male patients from two generations of a Northern Ireland family. The causative gene is localized to the Xq27-q28 region. The syndrome is transmitted as an X-linked recessive trait. [from ORDO]

MedGen UID:
162898
Concept ID:
C0796016
Congenital Abnormality
20.

Hirschsprung disease, susceptibility to, 4

The disorder described by Hirschsprung (1888) and known as Hirschsprung disease or aganglionic megacolon is characterized by congenital absence of intrinsic ganglion cells in the myenteric (Auerbach) and submucosal (Meissner) plexuses of the gastrointestinal tract. Patients are diagnosed with the short-segment form (S-HSCR, approximately 80% of cases) when the aganglionic segment does not extend beyond the upper sigmoid, and with the long-segment form (L-HSCR) when aganglionosis extends proximal to the sigmoid. Total colonic aganglionosis and total intestinal HSCR also occur (Amiel et al., 2008). Isolated HSCR appears to be of complex nonmendelian inheritance with low sex-dependent penetrance and variable expression according to the length of the aganglionic segment, suggestive of the involvement of one or more genes with low penetrance (Amiel et al., 2008). For a discussion of genetic heterogeneity of susceptibility to Hirschsprung disease, see 142623. [from OMIM]

MedGen UID:
462325
Concept ID:
C3150975
Finding

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...
External link. Please review our privacy policy.