U.S. flag

An official website of the United States government

Format
Items per page

Send to:

Choose Destination

Search results

Items: 1 to 20 of 45

1.

Smith-Lemli-Opitz syndrome

Smith-Lemli-Opitz syndrome (SLOS) is a congenital multiple-anomaly / cognitive impairment syndrome caused by an abnormality in cholesterol metabolism resulting from deficiency of the enzyme 7-dehydrocholesterol (7-DHC) reductase. It is characterized by prenatal and postnatal growth restriction, microcephaly, moderate-to-severe intellectual disability, and multiple major and minor malformations. The malformations include distinctive facial features, cleft palate, cardiac defects, underdeveloped external genitalia in males, postaxial polydactyly, and 2-3 syndactyly of the toes. The clinical spectrum is wide; individuals with normal development and only minor malformations have been described. [from GeneReviews]

MedGen UID:
61231
Concept ID:
C0175694
Disease or Syndrome
2.

Infantile hypophosphatasia

Hypophosphatasia is characterized by defective mineralization of growing or remodeling bone, with or without root-intact tooth loss, in the presence of low activity of serum and bone alkaline phosphatase. Clinical features range from stillbirth without mineralized bone at the severe end to pathologic fractures of the lower extremities in later adulthood at the mild end. While the disease spectrum is a continuum, seven clinical forms of hypophosphatasia are usually recognized based on age at diagnosis and severity of features: Perinatal (severe): characterized by pulmonary insufficiency and hypercalcemia. Perinatal (benign): prenatal skeletal manifestations that slowly resolve into one of the milder forms. Infantile: onset between birth and age six months of clinical features of rickets without elevated serum alkaline phosphatase activity. Severe childhood (juvenile): variable presenting features progressing to rickets. Mild childhood: low bone mineral density for age, increased risk of fracture, and premature loss of primary teeth with intact roots. Adult: characterized by stress fractures and pseudofractures of the lower extremities in middle age, sometimes associated with early loss of adult dentition. Odontohypophosphatasia: characterized by premature exfoliation of primary teeth and/or severe dental caries without skeletal manifestations. [from GeneReviews]

MedGen UID:
75677
Concept ID:
C0268412
Disease or Syndrome
3.

Cornelia de Lange syndrome 1

Cornelia de Lange syndrome (CdLS) encompasses a spectrum of findings from mild to severe. Severe (classic) CdLS is characterized by distinctive facial features, growth restriction (prenatal onset; <5th centile throughout life), hypertrichosis, and upper-limb reduction defects that range from subtle phalangeal abnormalities to oligodactyly (missing digits). Craniofacial features include synophrys, highly arched and/or thick eyebrows, long eyelashes, short nasal bridge with anteverted nares, small widely spaced teeth, and microcephaly. Individuals with a milder phenotype have less severe growth, cognitive, and limb involvement, but often have facial features consistent with CdLS. Across the CdLS spectrum IQ ranges from below 30 to 102 (mean: 53). Many individuals demonstrate autistic and self-destructive tendencies. Other frequent findings include cardiac septal defects, gastrointestinal dysfunction, hearing loss, myopia, and cryptorchidism or hypoplastic genitalia. [from GeneReviews]

MedGen UID:
1645760
Concept ID:
C4551851
Disease or Syndrome
4.

Atelosteogenesis type II

Clinical features of atelosteogenesis type 2 (AO2) include rhizomelic limb shortening with normal-sized skull, hitchhiker thumbs, small chest, protuberant abdomen, cleft palate, and distinctive facial features (midface retrusion, depressed nasal bridge, epicanthus, micrognathia). Other typical findings are ulnar deviation of the fingers, gap between the first and second toes, and clubfoot. AO2 is usually lethal at birth or shortly thereafter due to pulmonary hypoplasia and tracheobronchomalacia. However, it exists in a continuous phenotypic spectrum with diastrophic dysplasia, and long-term survivors have been reported. [from GeneReviews]

MedGen UID:
338072
Concept ID:
C1850554
Disease or Syndrome
5.

Achondrogenesis, type IB

Clinical features of achondrogenesis type 1B (ACG1B) include extremely short limbs with short fingers and toes, hypoplasia of the thorax, protuberant abdomen, and hydropic fetal appearance caused by the abundance of soft tissue relative to the short skeleton. The face is flat, the neck is short, and the soft tissue of the neck may be thickened. Death occurs prenatally or shortly after birth. [from GeneReviews]

MedGen UID:
78547
Concept ID:
C0265274
Congenital Abnormality
6.

Neu-Laxova syndrome 1

Any Neu-Laxova syndrome in which the cause of the disease is a mutation in the PHGDH gene. [from MONDO]

MedGen UID:
1633287
Concept ID:
C4551478
Disease or Syndrome
7.

Thanatophoric dysplasia, type 2

Thanatophoric dysplasia (TD) is a short-limb skeletal dysplasia that is usually lethal in the perinatal period. TD is divided into subtypes: TD type I is characterized by micromelia with bowed femurs and, uncommonly, the presence of craniosynostosis of varying severity. TD type II is characterized by micromelia with straight femurs and uniform presence of moderate-to-severe craniosynostosis with cloverleaf skull deformity. Other features common to type I and type II include: short ribs, narrow thorax, relative macrocephaly, distinctive facial features, brachydactyly, hypotonia, and redundant skin folds along the limbs. Most affected infants die of respiratory insufficiency shortly after birth. Rare long-term survivors have been reported. [from GeneReviews]

MedGen UID:
226975
Concept ID:
C1300257
Disease or Syndrome
8.

Platyspondylic dysplasia, Torrance type

The Torrance type of platyspondylic lethal skeletal dysplasia (PLSDT) is an autosomal dominant disorder characterized by varying platyspondyly, short ribs with anterior cupping, hypoplasia of the lower ilia with broad ischial and pubic bones, and shortening of the tubular bones with splayed and cupped metaphyses. Histology of the growth plate typically shows focal hypercellularity with slightly enlarged chondrocytes in the resting cartilage and relatively well-preserved columnar formation and ossification at the chondroosseous junction. Though generally lethal in the perinatal period, longer survival has been reported (summary by Zankl et al., 2005). [from OMIM]

MedGen UID:
331974
Concept ID:
C1835437
Disease or Syndrome
9.

Osteogenesis imperfecta type 7

Osteogenesis imperfecta is a connective tissue disorder characterized by bone fragility and low bone mass. OI type VII is an autosomal recessive form of severe or lethal OI (summary by Barnes et al., 2006). [from OMIM]

MedGen UID:
343981
Concept ID:
C1853162
Disease or Syndrome
10.

Osteodysplastic primordial dwarfism, type 1

Microcephalic osteodysplastic primordial dwarfism type I (MOPD1) is a severe autosomal recessive skeletal dysplasia characterized by dwarfism, microcephaly, and neurologic abnormalities, including mental retardation, brain malformations, and ocular/auditory sensory deficits. Patients often die in early childhood (summary by Pierce and Morse, 2012). [from OMIM]

MedGen UID:
347149
Concept ID:
C1859452
Congenital Abnormality
11.

Short-rib thoracic dysplasia 7 with or without polydactyly

Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia, see SRTD1 (208500). [from OMIM]

MedGen UID:
481422
Concept ID:
C3279792
Disease or Syndrome
12.

Achondrogenesis, type IA

The term achondrogenesis has been used to characterize the most severe forms of chondrodysplasia in humans, invariably lethal before or shortly after birth. Achondrogenesis type I is a severe chondrodystrophy characterized radiographically by deficient ossification in the lumbar vertebrae and absent ossification in the sacral, pubic and ischial bones and clinically by stillbirth or early death (Maroteaux and Lamy, 1968; Langer et al., 1969). In addition to severe micromelia, there is a disproportionately large cranium due to marked edema of soft tissues. Classification of Achondrogenesis Achondrogenesis was traditionally divided into 2 types: type I (Parenti-Fraccaro) and type II (Langer-Saldino). Borochowitz et al. (1988) suggested that achondrogenesis type I of Parenti-Fraccaro should be classified into 2 distinct disorders: type IA, corresponding to the cases originally published by Houston et al. (1972) and Harris et al. (1972), and type IB (600972), corresponding to the case originally published by Fraccaro (1952). Analysis of the case reported by Parenti (1936) by Borochowitz et al. (1988) suggested the diagnosis of achondrogenesis type II, i.e., the Langer-Saldino type (200610). Type IA would be classified as lethal achondrogenesis, Houston-Harris type; type IB, lethal achondrogenesis, Fraccaro type; and type II, lethal achondrogenesis-hypochondrogenesis, Langer-Saldino type. Superti-Furga (1996) suggested that hypochondrogenesis should be considered separately from achondrogenesis type II because the phenotype can be much milder. Genetic Heterogeneity of Achondrogenesis Achondrogenesis type IB (ACG1B; 600972) is caused by mutation in the DTDST gene (606718), and achondrogenesis type II (ACG2; 200610) is caused by mutation in the COL2A1 gene (120140). [from OMIM]

MedGen UID:
78546
Concept ID:
C0265273
Congenital Abnormality
13.

Osteogenesis imperfecta type 10

Osteogenesis imperfecta (OI) comprises a group of connective tissue disorders characterized by bone fragility and low bone mass. The disorder is clinically and genetically heterogeneous. OI type X is an autosomal recessive form characterized by multiple bone deformities and fractures, generalized osteopenia, dentinogenesis imperfecta, and blue sclera (Christiansen et al., 2010). [from OMIM]

MedGen UID:
462561
Concept ID:
C3151211
Disease or Syndrome
14.

Lethal osteosclerotic bone dysplasia

Raine syndrome (RNS) is a neonatal osteosclerotic bone dysplasia of early and aggressive onset that usually results in death within the first few weeks of life, although there have been some reports of survival into childhood. Radiographic studies show a generalized increase in the density of all bones and a marked increase in the ossification of the skull. The increased ossification of the basal structures of the skull and facial bones underlies the characteristic facial features, which include narrow prominent forehead, proptosis, depressed nasal bridge, and midface hypoplasia. Periosteal bone formation is also characteristic of this disorder and differentiates it from osteopetrosis and other known lethal and nonlethal osteosclerotic bone dysplasias. The periosteal bone formation typically extends along the diaphysis of long bones adjacent to areas of cellular soft tissue (summary by Simpson et al., 2009). Some patients survive infancy (Simpson et al., 2009; Fradin et al., 2011). [from OMIM]

MedGen UID:
342416
Concept ID:
C1850106
Disease or Syndrome
15.

Greenberg dysplasia

Greenberg dysplasia (GRBGD), also known as hydrops-ectopic calcification-moth-eaten (HEM) skeletal dysplasia, is a rare autosomal recessive osteochondrodysplasia characterized by gross fetal hydrops, severe shortening of all long bones with a moth-eaten radiographic appearance, platyspondyly, disorganization of chondroosseous calcification, and ectopic ossification centers. It is lethal in utero. Patient fibroblasts show increased levels of cholesta-8,14-dien-3-beta-ol, suggesting a defect of sterol metabolism (summary by Konstantinidou et al., 2008). Herman (2003) reviewed the cholesterol biosynthetic pathway and 6 disorders involving enzyme defects in postsqualene cholesterol biosynthesis: Smith-Lemli-Opitz syndrome (SLOS; 270400), desmosterolosis (602398), X-linked dominant chondrodysplasia punctata (CDPX2; 302960), CHILD syndrome (308050), lathosterolosis (607330), and HEM skeletal dysplasia. [from OMIM]

MedGen UID:
418969
Concept ID:
C2931048
Disease or Syndrome
16.

Chondrodysplasia Blomstrand type

Blomstrand chondrodysplasia is an autosomal recessive disorder characterized by short limbs, polyhydramnios, hydrops fetalis, facial anomalies, increased bone density, and advanced skeletal maturation (summary by Loshkajian et al., 1997). [from OMIM]

MedGen UID:
395189
Concept ID:
C1859148
Disease or Syndrome
17.

Lethal Kniest-like syndrome

Silverman-Handmaker dyssegmental dysplasia (DDSH) is a lethal autosomal recessive skeletal dysplasia with anisospondyly and micromelia. Individuals with DDSH also have a flat face, micrognathia, cleft palate and reduced joint mobility, and frequently have an encephalocele. The endochondral growth plate is short, the calcospherites (spherical calcium-phosphorus crystals produced by hypertrophic chondrocytes) are unfused, and there is mucoid degeneration of the resting cartilage (summary by Arikawa-Hirasawa et al., 2001). [from OMIM]

MedGen UID:
347372
Concept ID:
C1857100
Disease or Syndrome
18.

C syndrome

The C syndrome, also known as Opitz trigonocephaly syndrome, is a malformation syndrome characterized by trigonocephaly, severe mental retardation, hypotonia, variable cardiac defects, redundant skin, and dysmorphic facial features, including upslanted palpebral fissures, epicanthal folds, depressed nasal bridge, and low-set, posteriorly rotated ears (summary by Kaname et al., 2007). C syndrome shows phenotypic overlap with Bohring-Opitz syndrome, or C-like syndrome (605039), a disorder with more severe features than C syndrome, caused by heterozygous mutation in the ASXL1 gene (612990) on chromosome 20q11. [from OMIM]

MedGen UID:
167105
Concept ID:
C0796095
Disease or Syndrome
19.

Hamartoma of hypothalamus

Pallister-Hall-like syndrome (PHLS) is a pleiotropic autosomal recessive disorder characterized by phenotypic variability. Patients exhibit postaxial polydactyly as well as hypothalamic hamartoma, cardiac and skeletal anomalies, and craniofacial dysmorphisms. Hirschsprung disease has also been observed (Rubino et al., 2018; Le et al., 2020). Pallister-Hall syndrome (146510) is an autosomal dominant disorder with features overlapping those of PHLS, caused by mutation in the GLI3 gene (165240). [from OMIM]

MedGen UID:
137970
Concept ID:
C0342418
Congenital Abnormality; Finding
20.

Short-rib thoracic dysplasia 14 with polydactyly

Short-rib thoracic dysplasia (SRTD) with or without polydactyly refers to a group of autosomal recessive skeletal ciliopathies that are characterized by a constricted thoracic cage, short ribs, shortened tubular bones, and a 'trident' appearance of the acetabular roof. SRTD encompasses Ellis-van Creveld syndrome (EVC) and the disorders previously designated as Jeune syndrome or asphyxiating thoracic dystrophy (ATD), short rib-polydactyly syndrome (SRPS), and Mainzer-Saldino syndrome (MZSDS). Polydactyly is variably present, and there is phenotypic overlap in the various forms of SRTDs, which differ by visceral malformation and metaphyseal appearance. Nonskeletal involvement can include cleft lip/palate as well as anomalies of major organs such as the brain, eye, heart, kidneys, liver, pancreas, intestines, and genitalia. Some forms of SRTD are lethal in the neonatal period due to respiratory insufficiency secondary to a severely restricted thoracic cage, whereas others are compatible with life (summary by Huber and Cormier-Daire, 2012 and Schmidts et al., 2013). There is phenotypic overlap with the cranioectodermal dysplasias (Sensenbrenner syndrome; see CED1, 218330). For a discussion of genetic heterogeneity of short-rib thoracic dysplasia with or without polydactyly, see SRTD1 (208500). [from OMIM]

MedGen UID:
901479
Concept ID:
C4225286
Disease or Syndrome
Format
Items per page

Send to:

Choose Destination

Supplemental Content

Find related data

Search details

See more...

Recent activity

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

See more...