Warning: The NCBI web site requires JavaScript to function. more...
An official website of the United States government
The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.
The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.
Mitochondrial DNA depletion syndrome 9
SUCLG1-related mitochondrial DNA (mtDNA) depletion syndrome, encephalomyopathic form with methylmalonic aciduria is characterized in the majority of affected newborns by hypotonia, muscle atrophy, feeding difficulties, and lactic acidosis. Affected infants commonly manifest developmental delay / cognitive impairment, growth retardation / failure to thrive, hepatopathy, sensorineural hearing impairment, dystonia, and hypertonia. Notable findings in some affected individuals include hypertrophic cardiomyopathy, epilepsy, myoclonus, microcephaly, sleep disturbance, rhabdomyolysis, contractures, hypothermia, and/or hypoglycemia. Life span is shortened, with median survival of 20 months. [from GeneReviews]
Mitochondrial DNA depletion syndrome 6 (hepatocerebral type)
MPV17-related mitochondrial DNA (mtDNA) maintenance defect presents in the vast majority of affected individuals as an early-onset encephalohepatopathic (hepatocerebral) disease that is typically associated with mtDNA depletion, particularly in the liver. A later-onset neuromyopathic disease characterized by myopathy and neuropathy, and associated with multiple mtDNA deletions in muscle, has also rarely been described. MPV17-related mtDNA maintenance defect, encephalohepatopathic form is characterized by: Hepatic manifestations (liver dysfunction that typically progresses to liver failure, cholestasis, hepatomegaly, and steatosis); Neurologic involvement (developmental delay, hypotonia, microcephaly, and motor and sensory peripheral neuropathy); Gastrointestinal manifestations (gastrointestinal dysmotility, feeding difficulties, and failure to thrive); and Metabolic derangements (lactic acidosis and hypoglycemia). Less frequent manifestations include renal tubulopathy, nephrocalcinosis, and hypoparathyroidism. Progressive liver disease often leads to death in infancy or early childhood. Hepatocellular carcinoma has been reported. [from GeneReviews]
Mitochondrial DNA depletion syndrome 13
FBXL4-related encephalomyopathic mitochondrial DNA (mtDNA) depletion syndrome is a multi-system disorder characterized primarily by congenital or early-onset lactic acidosis and growth failure, feeding difficulty, hypotonia, and developmental delay. Other neurologic manifestations can include seizures, movement disorders, ataxia, autonomic dysfunction, and stroke-like episodes. All affected individuals alive at the time they were reported (median age: 3.5 years) demonstrated significant developmental delay. Other findings can involve the heart (hypertrophic cardiomyopathy, congenital heart malformations, arrhythmias), liver (mildly elevated transaminases), eyes (cataract, strabismus, nystagmus, optic atrophy), hearing (sensorineural hearing loss), and bone marrow (neutropenia, lymphopenia). Survival varies; the median age of reported deaths was two years (range 2 days – 75 months), although surviving individuals as old as 36 years have been reported. To date FBXL4-related mtDNA depletion syndrome has been reported in 50 individuals. [from GeneReviews]
Combined oxidative phosphorylation defect type 14
The spectrum of FARS2 deficiency ranges from the infantile-onset phenotype, characterized by epileptic encephalopathy with lactic acidosis and poor prognosis (70% of affected individuals), to the later-onset phenotype, characterized by spastic paraplegia, less severe neurologic manifestations, and longer survival (30% of affected individuals). To date FARS2 deficiency has been reported in 37 individuals from 25 families. Infantile-onset phenotype. Seizures are difficult to control and may progress quickly at an early age to intractable seizures with frequent status epilepticus; some children have hypsarrhythmia on EEG. All have developmental delay; most are nonverbal and unable to walk. Feeding difficulties are common. More than half of affected children die in early childhood. Later-onset phenotype. All affected individuals have spastic paraplegia manifested by weakness, spasticity, and exaggerated reflexes of the lower extremities associated with walking difficulties; some have developmental delay/intellectual disability; some have brief seizures that resolve over time. [from GeneReviews]
Combined oxidative phosphorylation defect type 7
A rare mitochondrial disease due to a defect in mitochondrial protein synthesis with a variable phenotype that includes onset in infancy or early childhood of failure to thrive and psychomotor regression (after initial normal development), as well as ocular manifestations (such as ptosis, nystagmus, optic atrophy, ophthalmoplegia and reduced vision). Additional manifestations include bulbar paresis with facial weakness, hypotonia, difficulty chewing, dysphagia, mild dysarthria, ataxia, global muscle atrophy, and areflexia. It has a relatively slow disease progression with patients often living into the third decade of life. [from SNOMEDCT_US]
Mitochondrial short-chain Enoyl-Coa hydratase 1 deficiency
Mitochondrial short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) represents a clinical spectrum in which several phenotypes have been described: The most common phenotype presents in the neonatal period with severe encephalopathy and lactic acidosis and later manifests Leigh-like signs and symptoms. Those with presentation in the neonatal period typically have severe hypotonia, encephalopathy, or neonatal seizures within the first few days of life. Signs and symptoms typically progress quickly and the affected individual ultimately succumbs to central apnea or arrhythmia. A second group of affected individuals present in infancy with developmental regression resulting in severe developmental delay. A third group of affected individuals have normal development with isolated paroxysmal dystonia that may be exacerbated by illness or exertion. Across all three groups, T2 hyperintensity in the basal ganglia is very common, and may affect any part of the basal ganglia. [from GeneReviews]
Neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome
Primary coenzyme Q10 (CoQ10) deficiency is usually associated with multisystem involvement, including neurologic manifestations such as fatal neonatal encephalopathy with hypotonia; a late-onset slowly progressive multiple-system atrophy-like phenotype (neurodegeneration with autonomic failure and various combinations of parkinsonism and cerebellar ataxia, and pyramidal dysfunction); and dystonia, spasticity, seizures, and intellectual disability. Steroid-resistant nephrotic syndrome (SRNS), the hallmark renal manifestation, is often the initial manifestation either as isolated renal involvement that progresses to end-stage renal disease (ESRD), or associated with encephalopathy (seizures, stroke-like episodes, severe neurologic impairment) resulting in early death. Hypertrophic cardiomyopathy (HCM), retinopathy or optic atrophy, and sensorineural hearing loss can also be seen. [from GeneReviews]
3-methylglutaconic aciduria type 8
MGCA8 is an autosomal recessive metabolic disorder resulting in death in infancy. Features include hypotonia, abnormal movements, respiratory insufficiency with apneic episodes, and lack of developmental progress, often with seizures. Brain imaging is variable, but may show progressive cerebral atrophy. Laboratory studies show increased serum lactate and 3-methylglutaconic aciduria, suggesting a mitochondrial defect (summary by Mandel et al., 2016). For a phenotypic description and a discussion of genetic heterogeneity of 3-methylglutaconic aciduria, see MGCA type I (250950). [from OMIM]
SLC39A8-CDG
Congenital disorder of glycosylation type IIn (CDG2N) is an autosomal recessive severe multisystem developmental disorder characterized by delayed psychomotor development apparent from infancy, hypotonia, and variable additional features, such as short stature, seizures, visual impairment, and cerebellar atrophy. Serum transferrin analysis shows a CDG type II pattern (summary by Boycott et al., 2015 and Park et al., 2015). For a discussion of genetic heterogeneity of CDG type II, see CDG2A (212066). [from OMIM]
Combined oxidative phosphorylation defect type 20
Combined oxidative phosphorylation defect type 20 is a rare mitochondrial oxidative phosphorylation disorder characterized by variable combination of psychomotor delay, hypotonia, muscle weakness, seizures, microcephaly, cardiomyopathy and mild dysmorphic facial features. Variable types of structural brain anomalies have also been reported. Biochemical studies typically show decreased activity of mitochondrial complexes (mainly complex I). [from ORDO]
Mitochondrial complex III deficiency nuclear type 8
Mitochondrial complex III deficiency, nuclear type 8, is an autosomal recessive disorder characterized by progressive neurodegeneration with onset in childhood. Affected individuals may have normal or delayed early development, and often have episodic acute neurologic decompensation and regression associated with febrile illnesses. The developmental regression results in variable intellectual disability and motor deficits, such as hypotonia, axial hypertonia, and spasticity; some patients may lose the ability to walk independently. Laboratory studies show increased serum lactate and isolated deficiency of mitochondrial complex III in skeletal muscle and fibroblasts. Brain imaging shows a characteristic pattern of multifocal small cystic lesions in the periventricular and deep cerebral white matter (summary by Dallabona et al., 2016). For a discussion of genetic heterogeneity of mitochondrial complex III deficiency, see MC3DN1 (124000). [from OMIM]
Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities
Neurodevelopmental disorder with progressive spasticity and brain white matter abnormalities (NEDSWMA) is an autosomal recessive disorder characterized by impaired psychomotor development apparent in infancy. Affected individuals show poor overall growth, progressive microcephaly, and axial hypotonia, with later onset of spasticity. The disorder is progressive. Some patients show normal early development, but later have regression of motor, cognitive, and language skills. More variable features include seizures, joint contractures, ocular disturbances, episodic respiratory failure, and nonspecific dysmorphic facial features. The intellectual impairment is variable, ranging from poor visual contact with inability to walk or speak to milder intellectual disability with the ability to say some words. Brain imaging shows variable white matter abnormalities, including thin corpus callosum and poor myelination (summary by Husain et al., 2020). [from OMIM]
Combined oxidative phosphorylation deficiency 32
Combined oxidative phosphorylation deficiency-32 is an autosomal recessive neurodegenerative disorder characterized by onset of delayed psychomotor development and developmental regression in infancy. Affected individuals have multiple variable symptoms, including poor or absent speech, inability to walk, and abnormal movements. Brain imaging shows T2-weighted abnormalities in the basal ganglia and brainstem consistent with Leigh syndrome (256000). Patient cells showed decreased activities of mitochondrial respiratory chain complexes, I, III, and IV, as well as impaired mitochondrial translation (summary by Lake et al., 2017). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060). [from OMIM]
Combined oxidative phosphorylation deficiency 19
Any combined oxidative phosphorylation deficiency in which the cause of the disease is a mutation in the LYRM4 gene. [from MONDO]
Combined oxidative phosphorylation deficiency 39
Combined oxidative phosphorylation deficiency-39 (COXPD39) is an autosomal recessive multisystem disorder resulting from a defect in mitochondrial energy metabolism. Affected individuals show global developmental delay, sometimes with regression after normal early development, axial hypotonia with limb spasticity or abnormal involuntary movements, and impaired intellectual development with poor speech. More variable features may include hypotonia, seizures, and features of Leigh syndrome (256000) on brain imaging. There are variable deficiencies of the mitochondrial respiratory chain enzyme complexes in patient tissues (summary by Glasgow et al., 2017). For a discussion of genetic heterogeneity of combined oxidative phosphorylation deficiency, see COXPD1 (609060). [from OMIM]
Mitochondrial complex 2 deficiency, nuclear type 4
Mitochondrial complex II deficiency nuclear type 4 (MC2DN4) is a severe autosomal recessive disorder characterized by early-onset progressive neurodegeneration with leukoencephalopathy. Acute episodes of neurodegeneration are often triggered by catabolic stress such as infection or fasting. [from OMIM]
Encephalopathy, neonatal severe, with lactic acidosis and brain abnormalities
NELABA is a severe autosomal recessive metabolic disorder characterized by onset at birth of progressive encephalopathy associated with increased serum lactate. Affected individuals have little or no psychomotor development and show brain abnormalities, including cerebral atrophy, cysts, and white matter abnormalities. Some patients die in infancy (summary by Habarou et al., 2017). [from OMIM]
Mitochondrial complex 1 deficiency, nuclear type 17
Deafness, congenital, and adult-onset progressive leukoencephalopathy
Congenital deafness and adult-onset progressive leukoencephalopathy (DEAPLE) is an autosomal recessive complex neurodegenerative disorder characterized by congenital neurosensory deafness followed by onset of neurodegenerative symptoms, including pyramidal signs and cognitive decline, in young adulthood. Some patients may have mild developmental delay or learning difficulties in childhood, but most can function independently. The onset of motor and cognitive decline in adulthood can be rapid and may result in early death. Brain imaging shows diffuse white matter abnormalities affecting various brain regions, consistent with a progressive leukoencephalopathy. More variable additional features may include visual impairment and axonal peripheral neuropathy (summary by Scheidecker et al., 2019). [from OMIM]
Developmental and epileptic encephalopathy 113
Developmental and epileptic encephalopathy-113 (DEE113) is characterized by severe early-onset recurrent epilepsy, which is worsened by treatment with levetiracetam. Patients develop secondary failure of growth and development (summary by and Huq, 2015 and Al-Maawali et al., 2024). For general phenotypic information and a discussion of genetic heterogeneity of DEE, see 308350. [from OMIM]
Filter your results:
Your browsing activity is empty.
Activity recording is turned off.
Turn recording back on