NCBI Logo
GEO Logo
   NCBI > GEO > Accession DisplayHelp Not logged in | LoginHelp
GEO help: Mouse over screen elements for information.
          Go
Series GSE22864 Query DataSets for GSE22864
Status Public on Sep 28, 2010
Title Comprehensive Analysis of Karyotypic Mosaicism between Trophectoderm and Inner Cell Mass
Organism Homo sapiens
Experiment type Other
Summary Aneuploidy has been well documented in blastocyst embryos, but prior studies have been limited in scale and/or lack mechanistic data. We previously reported preclinical validation of microarray 24-chromosome preimplantation genetic screening (PGS) in a 24-hour protocol. The method diagnoses chromosome copy number, structural chromosome aberrations, parental source of aneuploidy, and distinguishes certain meiotic from mitotic errors. In this study our objective was to examine aneuploidy in human blastocysts and determine correspondence of karyotypes between trophectoderm (TE) and inner cell mass (ICM). We disaggregated 51 blastocysts from seventeen couples into ICM and one or two TE fractions. The average maternal age was 31. Next, we ran 24-chromosome microarray molecular karyotyping on all of the samples, and then performed a retrospective analysis of the data. The average per-chromosome confidence was 99.95%. Approximately 80% of blastocysts were euploid. The majority of aneuploid embryos were simple aneuploid, i.e., one or two whole-chromosome imbalances. Structural chromosome aberrations, which are common in cleavage stage embryos, occurred in only three blastocysts (5.8%). All TE biopsies derived from the same embryos were concordant. Forty-nine of fifty-one (96.1%) inner cell mass (ICM) samples were concordant with TE biopsies derived from the same embryos. Discordance between TE and ICM occurred only in the two embryos with structural chromosome aberration. We conclude that trophectoderm karyotype is an excellent predictor of inner cell mass karyotype. Discordance between TE and ICM occurred only in embryos with structural chromosome aberrations.
 
Overall design We thawed all fractions at 22°C, and then added Arcturus PicoPure Lysis Buffer (Molecular Devices, Sunnyvale, CA) to each of the biopsies. The tubes were incubated at 56°C for one hour, and then heat inactivated at 95°C for 10 minutes. DNA from the lysed biospsies was amplified using a commercial kit (GE Healthcare, Waukesha, WI) for multiple displacement amplification (MDA). MDA reactions were incubated at 30°C for 2.5 hours and then heat-inactivated at 65°C for five minutes. The amplified samples were genotyped using Illumina (San Diego, CA, USA) Infinium II genotyping microarrays (CytoSNP-12 chips) using a modified 24-hour protocol, as described previously*. Previously, we developed a genotyping microarray molecular karyotyping technology that uses parental genetic data to increase accuracy and determine mechanism and source of aneuploidy*. The algorithm uses parental genotypes and the observed distribution of unprocessed single cell microarray channel intensities to diagnose whole-chromosome imbalances and structural chromosome aberrations*. Because parental genotypes are available, the algorithm readily identifies parental source of whole-chromosome imbalances and structural chromosome aberrations. Additionally, the algorithm uses parental information, high confidence disomic single cell measurements on children, and recombination probabilities (genome.ucsc.edu) to determine the phase of the parental chromosomes. The phased data is then used to determine whether certain trisomies and uniparental disomies were mitotic or meiotic in origin*. *Johnson DS, Gemelos G, Baner J, Ryan A, Cinnioglu C, Banjevic M, Ross R, Alper M, Barrett B, Frederick J, Potter D, Behr B, Rabinowitz M. (2010). Preclinical validation of a microarray method for full molecular karyotyping of blastomeres in a 24-hour protocol. Human Reproduction January 24 [Epub ahead of print].
 
Contributor(s) Johnson DS
Citation(s) 20643877
Submission date Jul 09, 2010
Last update date Jan 30, 2015
Contact name David Scott Johnson
E-mail(s) seasquirtdoctor@gmail.com
Phone 650-725-3018
Organization name Stanford University
Department Genetics
Lab Richard M. Myers
Street address 300 Pasteur Drive
City Stanford
State/province CA
ZIP/Postal code 94305
Country USA
 
Platforms (2)
GPL6985 Illumina HumanCNV370-QuadV3 DNA Analysis BeadChip (HumanCNV370-QuadV3_C)
GPL8855 Illumina HumanCytoSnp-12 Beadchip version 2.0
Samples (130)
GSM601157 ICM fraction 1
GSM601158 TE fraction 2
GSM601159 ICM fraction 3
Relations
BioProject PRJNA128075

Download family Format
SOFT formatted family file(s) SOFTHelp
MINiML formatted family file(s) MINiMLHelp
Series Matrix File(s) TXTHelp

Supplementary file Size Download File type/resource
GSE22864_RAW.tar 554.5 Mb (http)(custom) TAR (of IDAT, XML)
Processed data not provided for this record

| NLM | NIH | GEO Help | Disclaimer | Accessibility |
NCBI Home NCBI Search NCBI SiteMap